python中lcat是什么意思_lcatro/Machine-Learning-Note: 机器学习笔记

Machine Learning Note

机器学习笔记,后续整理一些Python 库使用方法与代码

学习资源

kNN k-邻近算法

优点:精度高,对异常值不敏感,无数据输入假定

缺点:计算复杂度高,空间复杂度高

适用数据范围:数值型和标称型

什么是数值型和标称型

标称型:标称型目标变量的结果只在有限目标集中取值

数值型:数值型目标变量则可以从无限的数值集合中取值

20171119210235_248.jpg

决策树

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据

缺点:可能会产生过度匹配问题

适用数据类型:数值型和标称型

朴素贝叶斯

优点: 在数据较少的情况下仍然有效,可以处理多类别问题

缺点: 对于输入数据的准备方式较为敏感

适用数据类型: 标称型数据

logics 回归

优点: 计算代价不高,易于理解和实现

缺点: 容易欠拟合,分类精度可能不高

适用数据类型: 数值型和标称型数据

SVM 支持向量机

优点:泛化(由具体的,个别的扩大为一般的,就是说:模型训练完后的新样本)错误率低,计算开销不大,结果易理解

缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适合于处理二分类问题

适用数据类型:数值型和标称型数据

深度学习

CNN

Python 库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值