I am trying to convert the dictionary
{0: {0: 173, 1: 342, 2: 666, 3: 506, 4: 94},
1: {0: 13, 1: 2171, 2: 1915, 3: 3075, 4: 630},
2: {0: 0, 1: 265, 2: 5036, 3: 508, 4: 11},
3: {0: 0, 1: 3229, 2: 2388, 3: 3649, 4: 193},
4: {0: 3, 1: 151, 2: 591, 3: 1629, 4: 410}}
to numpy array
array([[ 173, 342, 666, 506, 94],
[ 13, 2171, 1915, 3075, 630],
[ 0, 265, 5036, 508, 11],
[ 0, 3229, 2388, 3649, 193],
[ 3, 151, 591, 1629, 410]])
Any ideas how to do it efficiently?
解决方案
A Python-level loop is unavoidable here, so you can use a list comprehension:
res = np.array([list(item.values()) for item in d.values()])
# array([[ 173, 342, 666, 506, 94],
# [ 13, 2171, 1915, 3075, 630],
# [ 0, 265, 5036, 508, 11],
# [ 0, 3229, 2388, 3649, 193],
# [