黄佳俊、
码龄2年
  • 549,498
    被访问
  • 595
    原创
  • 3,451
    排名
  • 91
    粉丝
关注
提问 私信

个人简介:to be or not to be! 热爱生活! 执着学习!

  • 毕业院校: 北京化工大学
  • 加入CSDN时间: 2020-06-05
博客简介:

黄佳俊的博客

博客描述:
Somewhere remembers the time we lost !
查看详细资料
  • 7
    领奖
    总分 3,140 当月 319
个人成就
  • 获得266次点赞
  • 内容获得63次评论
  • 获得778次收藏
创作历程
  • 193篇
    2022年
  • 406篇
    2021年
成就勋章
TA的专栏
  • 人工智能学习
    10篇
  • 计算机网络
    17篇
  • 计算机系统结构学习
    9篇
  • MATH
    3篇
  • python数据分析学习
    41篇
  • Excel学习
    2篇
  • MySQL
    46篇
  • 大数据
    6篇
  • Python
    144篇
  • c++学习
    3篇
  • 数据结构
    1篇
  • 计算机底层文章
    14篇
  • C语言
    8篇
  • Linux
    18篇
  • 非关系型数据库学习
    3篇
  • Hadoop学习
    3篇
  • 数据分析
    18篇
  • edge浏览器
    1篇
  • 咸鱼看海
    4篇
  • 考研数学
    5篇
  • 人工智能导论
    1篇
  • 电脑基础
    15篇
  • 数据库
    6篇
  • 咸鱼思考
    5篇
  • HTML5
    3篇
  • Java
    132篇
  • 计算方法学习
    14篇
  • 吴恩达机器学习课程笔记
    8篇
  • 写论文学习
    2篇
  • 线性代数学习
    2篇
  • 数据挖掘学习
    5篇
  • 虚拟化技术学习
    6篇
  • 大数据技术基础
    11篇
  • 算法竞赛知识要点
    31篇
  • 算法竞赛进阶指南
    9篇
  • 操作系统原理学习笔记
    5篇
  • Java力扣练习题
    1篇
  • 离散数学
    2篇
  • 数论
    3篇
  • 算法设计与分析课程笔记
    1篇
  • 蓝桥杯复习
    3篇
  • php学习
    2篇
  • 六级辅导
    1篇
  • 数论学习
    1篇
  • python爬虫
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 大数据
    hadoophivestormsparkflumebig dataflinkhdfssqoop大数据
  • 数据库管理
    数据仓库
  • 后端
    flask
  • 人工智能
    分类回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

如何确定K-means算法中的k值?

最常用最简单的方法可视化数据,然后观察出聚类聚成几类比较合适 绘制出k-average with cluster distance to centroid的图表,观察随着k值的增加,曲线的下降情况,当曲线不再“急剧”下降时,就是合适的k值 计算不同k值下KMeans算法的BIC和AIC值,BIC或AIC值越小,选择该k值 使用 Canopy算法先进行粗略的聚类,产生的簇的个数,作为KMeans算法的k值 使用x-means方法结合BIC准则去判定簇的个数,也就是k值 使用Gap Statistic
原创
发布博客 2022.05.25 ·
40 阅读 ·
0 点赞 ·
0 评论

python使用numpy读取data文件

什么是DATA文件类型?.data扩展名普遍用于与通用数据文件(DATA)文件类型相关联。DATA文件类型被任意应用于包含某种可用的、通常只能由机器读取的数据的各种计算机文件。数据文件可以是简单的文本列表、数据库表转储、原始格式的重命名数据库文件、索引列表、二进制数据容器(可能是加密或数字签名的)或任何其他可以存储有意义("有效载荷")数据的文件。此外,.data文件在计算机编程中也经常遇到,它们作为内存转储或特定应用的数据容器出现。很多时候,data文件在MMORPG风格的游戏中是用来将游戏
原创
发布博客 2022.05.25 ·
38 阅读 ·
1 点赞 ·
0 评论

介绍国内四大骨干网与十大ISP服务商

1、骨干网几台计算机连接起来,互相可以看到其他人的文件,这叫局域网,整个城市的计算机都连接起来,就是城域网,把城市之间连接起来的网就叫骨干网。这些骨干网是国家批准的可以直接和国外连接的互联网。其他有接入功能的ISP(互联网服务提供商)想连到国外都得通过这些骨干网。骨干网(Backbone Network)是用来连接多个区域或地区的高速网络。每个骨干网中至少有一个和其他骨干网进行互联互通的连接点。不同的网络供应商都拥有自己的骨干网,用以连接其位于不同区域的网络。2、ISP服务商ISP所管辖的网
原创
发布博客 2022.05.24 ·
27 阅读 ·
0 点赞 ·
0 评论

什么是ISP(网络业务提供商)?

网络业务提供商(Internet Service Provider,简称ISP),互联网服务提供商,即向广大用户综合提供互联网接入业务、信息业务、和增值业务的电信运营商。在互联网应用服务产业链“设备供应商——基础网络运营商——内容收集者和生产者——业务提供者——用户”中,ISP处于内容收集者、生产者以及业务提供者的位置。网络业务提供商,能提供拨号上网服务、网上浏览、下载文件、收发电子邮件等服务,是网络最终用户进入Internet的入口和桥梁。它包括Internet接入服务和Internet内容提供服.
原创
发布博客 2022.05.24 ·
9 阅读 ·
0 点赞 ·
0 评论

什么是UDP?

Internet协议集支持一个无连接的传输协议,该协议称为用户数据报协议(UDP,User Datagram Protocol)。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。RFC 768[1]描述了 UDP。Internet 的传输层有两个主要协议,互为补充。无连接的是 UDP,它除了给应用程序发送数据包功能并允许它们在所需的层次上架构自己的协议之外,几乎没有做什么特别的事情。面向连接的是TCP,该协议几乎做了所有的事情。[2]UDP 是Us...
原创
发布博客 2022.05.24 ·
29 阅读 ·
0 点赞 ·
0 评论

什么是TCP (传输控制协议)?

传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793[1]定义。TCP旨在适应支持多网络应用的分层协议层次结构。 连接到不同但互连的计算机通信网络的主计算机中的成对进程之间依靠TCP提供可靠的通信服务。TCP假设它可以从较低级别的协议获得简单的,可能不可靠的数据报服务。 原则上,TCP应该能够在从硬线连接到分组交换或电路交换网络的各种通信系统之上操作。传输控制协议(TCP,Tran...
原创
发布博客 2022.05.24 ·
17 阅读 ·
0 点赞 ·
0 评论

决策树、装袋、提升和随机森林的对比理解

决策树决策树是一种简单、常用的基础模型。之所以说它简单,不仅因为它的思想原理简单具体、贴近实际,它并不需要像线性回归模型一样用一个数学公式来表征,而是由规则来抽象。说它基础,是因为它是一系列复杂强大的模型的基础。决策树的基本思想是通过将数据不断划分,使原来混乱的数据信息逐渐清晰。举一个简单的例子:如果你去相亲,你可能以外貌为第一特征来决定是否继续往下考虑;如果外貌过关了,你可能还会考虑职位和收入水平;如果收入水平也过关了,再去考虑品质……这种层层筛选的过程就蕴含着决策树的朴素思想。决策树不局限于
原创
发布博客 2022.05.24 ·
2 阅读 ·
0 点赞 ·
0 评论

什么是异常?

异常可以这样理解:计算机执行一个连续的指令序列,如:a1,a2,a3,,,ak,这些指令执行的时候是顺序执行的,相邻的两条指令ak,ak+1在存储中也是相邻的,也就是说他们是一个平滑的指令流。而有时候这种指令流会发生突变,也就是说相邻执行的两条指令ak,ak+1在存储器中是不相邻的。造成这种突变的可能有:跳转,函数调用,返回等。今天我们所讨论的异常,也是造成这种指令流突变的原因之一。所以异常可以认为是指令顺序执行的时候,突然跳转到别的地方执行指令。现在就可以来看相对专业的说法了:异常是控制流
原创
发布博客 2022.05.23 ·
4 阅读 ·
0 点赞 ·
0 评论

什么是向量指令和标量指令?

向量指令和标量指令:有些大型机和巨型机 设置功能齐全的向量运算指令系统。向量指令的基本操作对象是向量,即有序排列的一组数。若指令为向量操作,则由指令确定向量操作数的地址(主存储器起始地址或向量寄存器号),并直接或隐含地指定如增量、向量长度等其他向量参数。向量指令规定处理机按同一操作处理向量中的所有分量,可有效地提高计算机的运算速度。不具备向量处理功能,只对单个量即标量进行操作的指令称为标量指令。...
原创
发布博客 2022.05.23 ·
6 阅读 ·
0 点赞 ·
0 评论

软件方法的指令级并行——基本块内的指令级并行

5.2 软件方法的指令级并行——基本块内的指令级并行基本块是指一段顺序执行的代码,除了入口处没有其他转入分支,除了出口处没有其他转出分支考虑一下C语言代码:for (i = 1; i <= 1000; i++) { x[i] = x[i] + s;}其基本块对应的汇编程序为:Loop: LD F0,0(R1) ADDD F4,F0,F2 SD 0(R1),F4 DADDI R1,R1,#
原创
发布博客 2022.05.23 ·
28 阅读 ·
0 点赞 ·
0 评论

MIPS常见指令汇总

MIPS是世界上很流行的一种RISC处理器。MIPS的意思是“无内部互锁流水级的微处理器”(Microprocessor without interlocked piped stages),其机制是尽量利用软件办法避免流水线中的数据相关问题。它最早是在80年代初期由斯坦福(Stanford)大学Hennessy教授领导的研究小组研制出来的。MIPS公司的R系列就是在此基础上开发的RISC工业产品的微处理器。这些系列产品为很多计算机公司采用构成各种工作站和计算机系统。MIPS技术公司是美国著...
原创
发布博客 2022.05.23 ·
39 阅读 ·
0 点赞 ·
0 评论

什么是保留站?

保留站(reservation station)是2018年公布的计算机科学技术名词,出自《计算机科学技术名词 》第三版。定义:为了解决相继进入流水线的指令间数据或资源的相关性,在功能部件的输入端设置的暂存寄存器。操作数可以在保留站里等待,直到相关问题解决。...
原创
发布博客 2022.05.23 ·
4 阅读 ·
0 点赞 ·
0 评论

Tomasulo算法与记分牌算法的区别

由于记分牌算法只能检测竞争,但是不能消除竞争所以需要引入Tomasulo算法
原创
发布博客 2022.05.23 ·
22 阅读 ·
0 点赞 ·
0 评论

BHT的简单理解

BHT——Branch History Table,顾名思义,这是记录分支历史信息的表格,用于判定一条分支指令是否token;这儿记录的是跳转信息,简单点的,可以用1bit位记录,例如1表示跳转,0表示不跳转,而这个表格的索引是指令PC值;考虑在32位系统中,如果要记录完整32位的branch history,则需要4Gbit的存储器,这超出了系统提供的硬件支持能力;所以一般就用指令的后12位作为BHT表格的索引,这样用4Kbit的一个表格,就可以记录branch history了。当然,通过大
原创
发布博客 2022.05.23 ·
5 阅读 ·
0 点赞 ·
0 评论

一个正项级数收敛, 它的平方也收敛吗?

收敛证明:
原创
发布博客 2022.05.23 ·
24 阅读 ·
0 点赞 ·
0 评论

收敛级数加发散级数是什么情况?

收敛级数加发散级数的结果一定发散。级数只有发散和不发散两种情况,如果和级数收敛,拆开来的一个收敛,则另外一个肯定收敛。使用反证法证明:假设(一个发散级数∑An加上一个收敛级数∑Bn)结果∑(An+Bn)发散不正确即∑(An+Bn)收敛,那么由∑(An+Bn)收敛,∑Bn收敛,可知∑[(An+Bn)-Bn]收敛,即∑An收敛,与已知矛盾,从而假设不正确,原结论正确。...
原创
发布博客 2022.05.23 ·
24 阅读 ·
0 点赞 ·
0 评论

把cifar100的图片切割成一张张图片

把cifar100的图片切割成一张张图片(python代码):# -*- coding:utf-8 -*-import pickle as pimport numpy as npimport matplotlib.pyplot as pltimport matplotlib.image as plimgfrom PIL import Imagedef load_CIFAR_batch(filename): """ load single batch of cifar """
原创
发布博客 2022.05.22 ·
4 阅读 ·
0 点赞 ·
0 评论

pytorch报错:Target is out of bounds

查看网络的最后输出的输出节点数是否等于所有的标签数
原创
发布博客 2022.05.21 ·
48 阅读 ·
0 点赞 ·
0 评论

神经网络(深度学习)常用的4种最优化方法——SGD、MOMENTUM、ADAGRAD、ADAM

、SGD描述随机梯度下降法(stochastic gradient descent),策略是朝着当前所在位置的坡度最大的方向前进。PYTHON类class SGD: def __init__(self, lr=0.01): self.lr = lr def update(self, params, grads): for key in params.keys(): params[key] -= self.lr * grads[key]二、MOM
原创
发布博客 2022.05.21 ·
30 阅读 ·
0 点赞 ·
0 评论

运行报错error: (-215:Assertion failed) ssize.empty() in function ‘cv::resize‘

可能错误如下,欢迎补充:1、图片路径形式书写错误:错误的形式:C:\Users\Desktop\test\正确的应该:C:/Users/Desktop/test/注意:在程序中斜杠‘\’有转义字符含义2、图片路径少写了一个斜杠(图片存放在test文件夹中)错误:C:/Users/Desktop/test正确:C:/Users/Desktop/test/注意:千千万万不要忘了最后一个斜杠,不然读取的就变成了test这个文件夹而不是里面的图片了,因为一个不小心,我苦恼了两天,还以为是op
原创
发布博客 2022.05.21 ·
111 阅读 ·
1 点赞 ·
0 评论
加载更多