如何确定K-means算法中的k值?
最常用最简单的方法可视化数据,然后观察出聚类聚成几类比较合适 绘制出k-average with cluster distance to centroid的图表,观察随着k值的增加,曲线的下降情况,当曲线不再“急剧”下降时,就是合适的k值 计算不同k值下KMeans算法的BIC和AIC值,BIC或AIC值越小,选择该k值 使用 Canopy算法先进行粗略的聚类,产生的簇的个数,作为KMeans算法的k值 使用x-means方法结合BIC准则去判定簇的个数,也就是k值 使用Gap Statistic