PAGE
8 -
计算机中数据的表示
【教学目标】
知识目标:
1、理解进制的含义。
2、掌握二进制、十进制、八进制、十六进制数的表示方法。
3、掌握二进制、八进制、十六进制数转换为十进制的方法。
4、掌握十进制整数、小数转换为二进制数的方法。
技能目标:
1、培养学生逻辑运算能力。
2、培养学生分析问题、解决问题的能力。
3、培养学生独立思考问题的能力。
4、培养学生自主使用网络软件的能力。
情感目标:
通过练习数制转换,让学生体验成功,提高学生自信心。
【教学重点】:
1、各进制数的表示方法。
2、各进制数间相互转换的方法。
【教学难点】:
二进制、八进制、十六进制之间转换的方法。
【教学方法】:教师讲授、学生练习、教师总结、教师评价
【教学类型】:新授课
【教学时数】:3课时
【教学过程】
第一课时
新课导入
我们日常生活中使用的数是十进制、十进制不是唯一的数的表示方法,表示数的数制还有哪些呢?这些数制与十进制间有什么关系呢?这节课我们就来学习数制。
新课讲解
1、进位计数制
?以十进制为例:
十进制中采用0,1,2,3,4,5,6,7,8,9这十个数字来表示数据,逢十向相邻高位进一;每一位的位权都是以10为底的指数函数,由小数点向左,各数位的位权依次是100,101,102,103 ……;由小数点向右,各数位的位权依次为10-1 10-2 10-3
N=an ′10n+ an-1 ′10n-1+ …… +a1 ′101+ a0 ′100+ a-1 ′10-1+ …… +a-m ′10-m
位值位权
位值
位权
数制的表示方法:为了区别不同进制数,一般把具体数用括号括起来,在括号的右下角标上相应表示数制的数字。
举例:(101)2与(101)10
基数:所使用的不同基本符号的个数。
权:是其基数的位序次幂。
十进制、二进制、十六进制、八进制的概念
(1)十进制(D):由0~9组成;权:10i;计数时按逢十进一的规则进行;用(345.59)10或345.59D表示。
(2)二进制(B):由0、1组成;权:2i;计数时按逢二进一的规则进行;用(101.11)2或101.11B表示。
(3)十六进制(H):由0~9、A~F组成;权:16i;计数时按逢十六进一的规则进行;用(IA.C)16或IA.CH表示。
(4)八进制(Q):由0~7组成;权:8i;计数时按逢八进一的规则进行;用(34.6)8或34.6Q表示。
总结:不同数制的表示方法有两种,一种是加括号及数字下标,另一种是数字后加相应的大写字母D、B、H、Q。
按权展开基本公式:
设一个基数为R的数值N,N=(dn-1dn-2…d1d0d-1…d-m),则N的展开为:N=dn-1×Rn-1+dn-2×Rn-2+…+d1×R1+d0×R0+d-1×R-1+…+d-m×R-m。
说明:(dn-1dn-2…d1d0d-1…d-m)表示各位上的数字,Ri为权。
例如:十进制数2345.67展开式为:2345.67=2×103+3×102+4×101+5×100+6×10-1+7×10-2
2、二、八、十六进制转换为十进制的方法
①二进制转换为十进制的方法
(1011.011)2=1×23+0×22+1×21+1×20+0×2-1+1×2-2+1×2-3=(11.375)10
②八进制转换为十进制的方法
(246)8=(2×82+4×81+6×80)10=(166)10
③十六进制转换为十进制的方法
(2AB.C)16 =(2×162+10×161+11×160+12×16-1)10
=(683.75)10
练习:①(11001)2=(25)10 ②(110110)2=(54)10
③(165)8=(117)10 ④(207)2=(135)10
⑤(2CF)16=(719)10 ⑥(59)16=(89)10
总结:n进制转换为十进制的方法是按权展开法。(将n进制数按权展开相加即可得到相应的十进制数)。
学生练习:教师给出练习题,对于学生练习过程中出现的典型问题进行总结。
【例题1】 二进制的1000001相当十进制的______,二进制的100.001可以表示为______。
A: = 1 \* GB3 ① 62 = 2 \* GB3 ② 63 = 3 \* GB3 ③ 64 = 4 \* GB3 ④ 65
B: = 1 \* GB3 ① 23+2–3 = 2 \* GB3 ② 22+2–2 = 3 \* GB3 ③ 23+2–2 = 4 \* GB3 ④ 22+2–3
【例题2】 八进制的100化为十进制为______,十六进制的100化为十进制为______。
A: = 1 \* GB3 ①