python整数上限,970. 强整数(Python)

本文介绍了一种算法,用于寻找所有小于或等于bound的由x和y构成的强整数,即x的幂次方加上y的幂次方。通过穷举和对数计算确定搜索范围,然后利用Python实现,适用于x=2, y=3, bound=10这类问题的解决。
摘要由CSDN通过智能技术生成

更多精彩内容,请关注【力扣简单题】。

题目

难度:★★☆☆☆

类型:数学,排列组合

给定两个正整数 x 和 y,如果某一整数等于 x^i + y^j,其中整数 i >= 0 且 j >= 0,那么我们认为该整数是一个强整数。

返回值小于或等于 bound 的所有强整数组成的列表。

你可以按任何顺序返回答案。在你的回答中,每个值最多出现一次。

提示

1 <= x <= 100

1 <= y <= 100

0 <= bound <= 10^6

示例

示例 1

输入:x = 2, y = 3, bound = 10

输出:[2,3,4,5,7,9,10]

解释:

2 = 2^0 + 3^0

3 = 2^1 + 3^0

4 = 2^0 + 3^1

5 = 2^1 + 3^1

7 = 2^2 + 3^1

9 = 2^3 + 3^0

10 = 2^0 + 3^2

示例 2

输入:x = 3, y = 5, bound = 15

输出:[2,4,6,8,10,14]

解答

这道题的难点在于如何进行i和j的搜索。我们可以使用类似穷举法的方式,找到所有可能的(i, j)组合,注意这里的i和j有可能相等,并且从零开始,上限需要我们寻找。

如何寻找上限?我们首先需要设置(i, j)搜索范围,这与输入的两个数字x和y有关,为了寻找尽可能全面,我们需要选出以边界bound为底,分别以x和y为幂的对数log(bound, x)和log(bound, y)中的较大值,并且取整,因此搜索范围初步定为从0到int(log(bound, min(x, y)))(含)。

举个栗子,如果输入x=2,y=3,bound=10,搜索空间的上限是int(min(log(10, 2), log(10, 3)))+1 = int(log(10, min(2, 3)))+1=int(log(10, 2))+1 = int(3.32...) = 3,i和j的搜索范围是[0, 1, 2, 3],在python中表示为list(range(4))。(注意这里是左闭右开的区间)

python中product(list, repeat=2)可以返回列表自身与自身元素组成的笛卡尔积元组,上述(i, j)元素的搜索范围可以表示为product(range(4), repeat=2),这时会生成一个迭代器,迭代会获得下面的(i, j)元组:

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

2 0

2 1

2 2

2 3

3 0

3 1

3 2

3 3

这些i,j囊括了不大于bound的所有pow(x, i)+pow(y, i)可能,我们要做的从其中选择出能使pow(x, i)+pow(y, i)不大于bound的所有可能。

这里有一个问题需要注意,就是log(b, a)(计算以b为底a的对数)函数的输入参数存在合法范围,a不能小于1,b不能小于2,因此我们使用max()函数对输入进行下限的限制:log(max(b, 1), max(a))。

from itertools import product

from math import log

class Solution:

def powerfulIntegers(self, x, y, bound):

"""

:param x: int

:param y: int

:param bound: int

:return: List[int]

"""

res = []

rg = int(log(max(bound, 1), min(max(x, 2), max(y, 2))))+1

for i, j in product(range(rg), repeat=2):

num = x ** i + y ** j

if num <= bound:

res.append(num)

return list(set(res))

如有疑问或建议,欢迎评论区留言~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值