- 博客(1071)
- 收藏
- 关注
转载 一位女孩的一生!
你好,我是郭震(zhenguo)这一期,使用AI,生成一位女孩一生中12个重要时刻的图片,包括从出生,到长大,读中学,高中,大学,工作,结婚,生子,陪孩子长大...下面附上大图:出生童年:中学:高中:大学:毕业工作:结婚:照顾小孩:为孩子缝补:送儿子上大学:孩子结婚了:看儿子的小孩:致敬!下期再见!...
2023-11-19 13:31:28
31
转载 一个男孩的一生!
你好,我是郭震(zhen guo)人工智能AI可以做很多事情,它正在悄无声息改变着每个行业。下面是我使用AI生成的10幅图,刻画了一个男孩从出生到成人,工作,到结婚,再到逐渐变老,喜提金婚的一生。祝愿我们都能走好这一生!下面附录大图下期再见!...
2023-11-12 11:27:28
46
原创 美国的苹果多少钱一斤?
你好,我是郭震 (zhenguo)给想出来的读者朋友们,看下这边的生活日常,这是第二篇。今天分享苹果,上周日我去Costco超市购买的一盒,如下图所示:打开盒子,苹果长这样:好,接下来翻译第一幅图上的英文,先从最显眼的字符开始,其中BIOLOGIQUE" 是一个法语词汇,翻译为英文是 "organic",有机的 意思。Honeycrisp是一个苹果品种,名字:蜜脆苹果。这个苹果我刚才查了下,它是在...
2023-11-02 07:56:17
79
原创 美国一桶牛奶多少钱?
你好,我是郭震(zhenguo)最近,关注我的朋友中有几位,想叫我多分享下美国的生活。今天我就从一个很小的生活点入手。牛奶,开始。牛奶在美国超市一般都是下面的这种大桶,比如Costco超市里,一般提供以下两种,口感有些不同,但是价格很相似。下面小票是我在8月31日去Costco超市,购买一桶上图红色标注的这种,3.45美元(下图标有WHOLE MILK这个商品)。蓝色标注的这种牛奶2.5美元左右(...
2023-09-16 11:30:59
189
原创 我们来美国一年了!
读者朋友们,你们好,我是郭震(zhen guo)「去年美国农场摘苹果,路过密西西比河」拍摄去年,我带着老婆孩子一起来到现在的城市,还记得,那是当地时间7月28日晚上8点多。一年过去,我想分享一下过去的一路心得,希望帮助到曾与我想法一样的读者朋友们,想有着工作几年后来美国继续深造。圣路易斯,不是大城市,没有喧嚣,没有高楼大厦,不堵车。我比较喜欢这样的环境。来美国前,我是不会开车的。来到美国后,不会开...
2023-08-13 10:16:19
138
转载 机会来了!美国计算机博士名额,都是全奖!
你好,我是郭震(zhen guo)今天为关注我的读者朋友们,提供一个赴美读博深造的绝佳机会,都是全奖(免学费+每月几千刀工资)。更重要的是,导师王威,学识渊博,拥有很高的科研水平,N多篇计算机顶会论文,对学生负责、耐心。想申请的尽快给他发邮件,见文末。圣路易斯大学(Saint Louis University)计算机学院王威老师(tenure-track assistant professor)现...
2023-08-06 11:02:07
190
原创 该怎么做好一件事?
你好,我是郭震(zhenguo)我也一把年纪,经常回想年轻时做事的方法,现在看,当时做有些事,方法很傻。换成现在,我会放弃当时做事方法。年轻时,行动前,想这个,想那个,担心这个,担心那个,最后,都没开始,就已然无限拖延,最后不了了之。现在看来,想那么多干嘛,边想边做,边做边思考,有何不可?!!! 疑虑有啥用,只会徒增烦恼,直接开始行动,做事遇到的困难,应该都有法子解决。事情很重要,要立即行动,迈出...
2023-07-09 01:19:12
61
转载 今天去了一趟美国超市
同学们好,我是zhenguo(郭震)今天晚上去了一趟家附近的Costco超市,本来想去买一桶食用油,但顺便买了远不止是油。2桶植物油 12.99,西瓜6.99,这次终于将西瓜安置在箱子里,放在后备箱不用来回晃荡了!这种箱子Costco超市里可以随意使用。披萨9.98,晚上就不用做饭了!坚果9.9开心果 14.9水 6美元多维生素 8.9美元排骨 25美元多酱油6美元多1桶,买2桶零食6美元多这个...
2023-06-22 11:11:19
84
原创 第10篇:强化学习Q-learning求解迷宫问题 代码实现
你好,我是郭震(zhenguo)今天重新发布强化学习第10篇:强化学习Q-learning求解迷宫问题 代码实现我想对此篇做一些更加详细的解释。1 创建地图创建迷宫地图,包括墙网格,走到墙网格就是负奖励。注意:空白可行走网格奖励值设置为负数,比如-1, 是为减少路径中所经点数;如果设置为大于0的奖励值,路线中会出现冗余点。importnumpyasnp#创建迷宫地图exit_coor...
2023-06-15 06:01:35
378
原创 第十二篇:强化学习SARSA算法
你好,我是郭震(zhenguo)今天强化学习第二十篇:强化学习SARSA算法1 历史SARSA(「State-Action-Reward-State-Action」)算法是一种经典的强化学习算法,用于解决马尔可夫决策过程(MDP)问题。该算法于1994年由美国计算机科学家Rummery和Niranjan提出。后由Richard S. Sutton和Andrew G. Barto在他们的著作《Rei...
2023-06-11 02:01:55
745
原创 Q-learning算法 探索与利用平衡问题
你好,我是郭震(zhenguo)Q-learning算法中,探索与利用是一个重要的平衡性问题。怎么在算法中平衡,今天第十一篇讨论:Q-learning算法探索与利用平衡问题探索和利用在Q-learning中,探索是指探索未知的状态-动作对,以便更好地了解环境和获得更多的奖励信息。而利用则是指根据已有的Q值选择最优的动作来最大化累积奖励。ε-greedy策略平衡探索与利用的关键是在算法中使用ε-gr...
2023-06-10 12:09:41
936
原创 第十篇:强化学习Q-learning求解迷宫问题 代码实现
你好,我是郭震(zhenguo)今天强化学习第10篇:强化学习Q-learning求解迷宫问题 代码实现1 创建地图创建迷宫地图importnumpyasnp#创建迷宫地图exit_coord=[3,3]row_n,col_n=4,4maze=np.zeros((row_n,col_n))maze[exit_coord]=12 定义动作定义动作集合#定...
2023-06-09 08:02:18
234
原创 第九篇:强化学习Q-learning算法 通俗介绍
你好,我是郭震(zhenguo)今天介绍强化学习第九篇:Q-learning算法前面我们介绍强化学习基本概念,马尔科夫决策过程,策略迭代和值迭代,这些组成强化学习的基础。从今天开始逐步介绍常用强化学习算法,从最简单的Q-learning算法开始。简单并不代表不常用,有的简单会是经典,Q-learning算法就是这样的例子。1 迷宫游戏假设我们有一个迷宫地图,其中包含多个状态(格子),每个格子可以采...
2023-06-08 08:02:39
1288
原创 我的一点感悟
你好,我是郭震(zhenguo)!今天来一点感悟。时光荏苒,转眼间来美快1年。就像写公众号一样,已陪我走过6年。每当浮躁时,我喜欢通过写公众号文章来让自己沉下来,再安下心来做喜欢的事。人都是有惰性的,尤其在我这个年纪,容易安于现状,对已有的心满意足,然后就是停滞不前,慢慢进入中年。但是我不喜欢这样,我更希望不断取得突破,不断向上成长。很幸运,而立和知天命中间点,还有机会带着家人来美读博,能做自己喜...
2023-06-07 03:14:07
55
原创 第八篇:强化学习值迭代及代码实现
你好,我是郭震(zhenguo)前几天我们学习强化学习策略迭代,今天,强化学习第8篇:强化学习值迭代值迭代是强化学习另一种求解方法,用于找到马尔可夫决策过程(MDP)中的最优值函数。值迭代值迭代可以总结为如下几点:值迭代通过不断迭代更新值函数来逼近最优值函数,从而确定最优策略。值迭代的关键是在每次迭代中更新值函数。对于每个状态,通过考虑所有可能的动作和下一个状态,选择能够使值最大化的动作,并计算更...
2023-06-05 03:01:07
341
1
转载 第七篇:强化学习策略迭代 代码实现
你好,我是郭震(zhenguo)今天介绍强化学习第7篇:强化学习策略迭代代码实现首先,我们导入包:importnumpyasnp其次,定义迷宫状态空间大小,在这里是9个空格,所以状态数9。动作空间大小,最多为4个,上、下、左、右num_states=9num_actions=4定义迷宫的奖励矩阵,它是二维数组,维度含义:[num_states][num_actions]reward...
2023-06-04 03:03:58
294
原创 第六篇:强化学习策略迭代 通俗解释
你好,我是zhenguo(郭震)今天,介绍强化学习第6篇:策略迭代策略迭代是马尔可夫决策过程(MDP)中的一种求解方法,当然也是强化学习常用求解方法。它的思想可以用通俗的方式解释如下:假设你正在玩一个迷宫游戏,目标是找到迷宫的出口。你每到达一个迷宫的某个位置,都需要根据当前的状态(位置)来选择一个行动(向上、向下、向左、向右)来移动。你希望找到一种「最优的策略」,即在每个位置都选择最好的行动,从而...
2023-05-26 06:39:39
897
原创 第五篇:强化学习基础之马尔科夫决策过程
你好,我是zhenguo(郭震)今天总结强化学习第五篇:马尔科夫决策过程基础马尔科夫决策过程(MDP)是强化学习的基础之一。下面统一称为:MDPMDP提供了描述序贯决策问题的数学框架。它将决策问题建模为:状态、动作、转移概率和奖励的组合,并通过优化累积奖励的目标来找到最优的决策策略。详细来说,MDP包含以下要素:状态(State):系统或环境可能处于的不同状态。动作(Action):在每个状态下可...
2023-05-25 02:01:22
806
转载 复习强化学习过往四篇
你好,我是zhenguo(郭震)今天,希望大家复习一下强化学习过往四篇,我会在第五篇介绍马尔科夫决策过程第一篇:强化学习基本原理通俗介绍第二篇:强化学习中的7个基础概念第三篇:强化学习发展历史第四篇:强化学习的应用领域和案例你的点赞和转发,给我更新增加更大动力,感谢你的支持。...
2023-05-23 01:01:31
50
原创 强化学习的应用领域和案例
你好,我是zhenguo(郭震)今天总结强化学习第四篇:强化学习的应用领域第一:游戏领域。强化学习在游戏领域有很多应用,如围棋、象棋、扑克等游戏的AI对战。例如,AlphaGo使用强化学习技术,在围棋比赛中击败了人类世界冠军。AlphaGo在对阵李世石的第二局中做出的传奇落子动作。这手落子震惊了许多职业棋手。图片来源:https://zhuanlan.zhihu.com/p/367642661第二...
2023-05-22 01:01:53
686
1
原创 第三篇:强化学习发展历史
你好,我是zhenguo(郭震)这是强化学习第三篇,我们回顾一下它的发展历史:强化学习发展历史强化学习作为一门研究领域,经历了多年的发展和演进。以下是强化学习的主要发展历史里程碑:1950年代-1960年代康奈尔大学的康奈尔Aeronautical Laboratory (CAL) 开展了早期的多智能体强化学习研究,研究目标是训练机器人进行学习和决策。1970年代-1980年代学习理论的发展奠定了...
2023-05-21 00:50:49
640
原创 第二篇:强化学习中的7个基础概念
你好,我是zhenguo(郭震)这是强化学习第二篇:强化学习7个基础概念在强化学习中,智能体需要在不断尝试和错误的过程中学习,通过观察环境的反馈(奖励或惩罚)来调整自己的行为,从而逐步改进策略。强化学习常见的概念,结合迷宫游戏给大家阐述一下。第一,红点表示智能体,它在迷宫这个环境中玩耍:第二,环境,在这里就是迷宫,迷宫环境里有:初始出发点,白色方块表示可以通行的格子,黑色格子表示障碍物,绿点表示迷...
2023-05-20 00:21:58
459
原创 第一篇:强化学习基本原理通俗介绍
你好,我是zhenguo(郭震)今天强化学习第一篇:白话介绍强化学习的基本原理强化学习是一种机器学习方法,旨在让智能体(agent)通过与环境的交互学习如何做出最优的行动选择以获得最大的累积奖励。这是官方化的定义,初学者如何更好理解这个定义呢。我们看看下面这幅图,智能体就是下面的红点。环境是什么呢?就是智能体(红点)所处的这个迷宫,迷宫中黑格子表示障碍物,它是无法穿过的。白格子表示可以正常通行。这...
2023-05-19 01:01:58
554
原创 我将开始更新 强化学习
你好,我是zhenguo(郭震)很久没有更新文章,从现在开始我将逐步恢复更新。在接下来的日子,我将系统更新强化学习文章,在期间,也会插播一些读博做科研的一些日常总结。如果你感兴趣,欢迎关注学习。写公众号文章,是沉淀技术非常好的一种方法,希望更多朋友参与进来。精进技术,脚踏实地,永远不过时。下面是强化学习的初步更新大纲,我将大概按照此大纲,每几天总结发布一篇文章。感兴趣的朋友讨论学习起来。文字版:强...
2023-05-18 01:02:19
297
原创 机器学习:处理缺失值方法总结
你好,我是你们的老朋友,zhenguo!处理缺失值是在进行机器学习时非常重要的一个步骤。缺失值会影响机器学习模型的准确度,因此在训练模型之前,通常需要先处理掉缺失值。这篇文章,总结一些常见的缺失值处理方法。常见处理方法机器学习常见处理方法包括:删除带有缺失值的行:这种方法适用于数据集中缺失值较少的情况。但是,如果删除的行数过多,会导致数据集的样本量过少,不利于模型的训练。用平均值、中位数或众数来填...
2023-01-09 13:07:58
755
原创 机器学习:单或双变量常用分析技巧
你好,我是你们的老朋友,zhenguo!在机器学习EDA阶段,变量分析及可视化是常做的事情,这篇文章总结变量分析中,最常使用的单变量,双变量分析以及可视化。单变量分析单变量分析是指分析单个变量对目标变量的影响。例如,在预测房屋价格的模型中,单变量分析可以探究房屋面积对价格的影响。单变量分析中,常用到boxplot图,用来显示一个变量的分布情况,并且常用于离散变量。importmatplotlib...
2023-01-08 14:49:52
804
原创 梳理机器学习常用算法(含深度学习)
你好,我是你们的老朋友,zhenguo!机器学习的任务主要分为三类:监督学习非监督学习强化学习监督学习是指在训练过程中,模型是根据给定的输入和输出标签来学习的。监督学习的任务主要分为分类和回归两类,常用的算法有:非监督学习是指在训练过程中,模型没有给定的输出标签,而是要从输入数据中自动发现规律的。非监督学习的任务主要分为聚类和降维两类,常用的算法有:深度学习是一种机器学习方法,它使用深层神经...
2023-01-05 12:11:57
268
原创 Q527:理解Python装饰器的3个案例
你好,我是你们的老朋友,zhenguo!这篇文章来自同学的提问,问题就是如何系统理解Python装饰器,我在此总结如下。1 装饰器就是函数Python 中的装饰器是一种高阶函数,可以在不修改函数的情况下将新的功能添加到函数中。装饰器使用 @ 语法糖,并且可以用来装饰函数、类和方法。在本质上,装饰器是一个函数,它必须是接受一个函数作为参数,并返回一个函数。返回的函数包含了原来函数的功能,并额外添加了...
2023-01-04 08:00:23
127
原创 Q526: 如何高效学习 Python 的第三方库?
你好,我是你们的老朋友,zhenguo!这篇文章来自同学的提问,问题就是如何高效学习 Python 的第三方库,我在此总结如下。通用思路整体思路从以下几个角度入手:阅读文档:第三方库通常都会有相应的文档,文档会介绍这个库的功能、使用方法等内容,所以一定要认真阅读文档。安装并运行示例代码:第三方库通常都会提供一些示例代码,你可以先安装库,然后运行示例代码来了解库的用法。尝试自己写代码:在阅读文档和运...
2023-01-02 09:04:18
174
原创 2023年要来了。顺便分享过来后我的学开车经历
你好呀,读者朋友们!我是你们的老朋友 zhen guo时光如梭,转眼间我这边再有1个来小时就2023年了,因时差,很多看到这里的读者朋友应该都已经进入2023年。2022年再也回不去了,就像曾经过去的每一年那样,都不会回去。长大了,就会觉得过去好,而过去的此刻也在盼着未来会更好。这就是人,富有复杂思想的感性群体,无论再理性,都会这样想,尤其越来越年长后。过去一年对我而言所有发生的事情,也没有多少能...
2023-01-01 13:49:07
299
转载 基于深度学习的对话系统:最新进展
你好,我是zhenguo记录一篇survey,文末提供下载网址,一共110页基于深度学习的对话系统的最新进展:系统的调查这篇survey发表于2022年,详细汇总基于深度学习的对话系统最新进展。对话系统是一种流行的自然语言处理(NLP)任务,因为它在现实应用中很有前途。这也是一项复杂的任务,因为许多NLP任务值得研究涉及。因此,就这一任务开展了大量的创作。由于他们出色的表现,他们中的大多数都是基于...
2022-12-13 12:31:07
273
原创 [Python私活案例]24行代码,轻松赚取400元,运用Selenium爬取39万条数据
今天分享一单来自金主爸爸的私单,运用简单的爬虫技巧,可以有效的规避反爬机制,正所谓“你有张良计,我有过云梯”。这个案例也很好的体现了python语音的优势,规避了非常复杂的底层逻辑,所见即所得,30分钟收入200。。1.1 爬虫的思路及分析当我们接到一个爬虫的单子时,一定要先分析思路,程序员的工作思路往往比代码更重要,思路对了,代码不会还可以查,思路错了,就只能在无尽的报错中呵呵了~~我接到这个私...
2022-12-02 23:11:55
5649
12
原创 字符串实践常见问题总结
最近发现很多小伙伴搞不清楚编码和解码,以及字符串前缀 f、r、u 、b 的区别和使用。那以下内容千万不要错过!1 ASCII,Unicode,GBK和utf8ASCII (American Standard Code for Information Interchange,美国信息交换标准代码)是基于拉丁字母的一套电脑编码系统,主要用于显示现代英语和其他西欧语言,共定义了128 个字符 。Unic...
2022-11-14 10:30:24
129
转载 IP地址翻译成实际的物理地址
Web API经常被那些使用成熟的公开服务(public service)的开发者所使用。例如, ESPN提供了获取运动员信息,比赛分数等信息的API。Google的开发者社区也提供了几十个API,用于语言翻译、分析、地理位置等信息。下面利用ip-api的api和淘宝ip地址库提供的api,编写根据ip地址进行查询实际的物理地址。运行环境 IDE: Pycharm2021 OS:macOS ...
2022-11-08 14:30:37
309
原创 Python环境搭建手把手图文教程
你好,我是zhen guo这篇文章来自我的铁粉cda灰太狼投稿,总结了入门Python最重要的一步:python环境搭建。这篇文章介绍的方法是一个易学、高效、强大的搭建环境的体系方法,非常推荐大家按照这个方法做。同时这也是一个手把手教程,具体包括:conda创建虚拟环境在Pycharm中配置上步创建的虚拟环境下载anconda并使用conda这是它的官网Anacondahttps://www.an...
2022-09-26 22:06:48
572
原创 Python之谜:四舍五入round(4.5)等于4?
你好,我是zhen guo!四舍五入4.5,应该返回结果5,但是使用Python或NumPy内置的round方法计算,结果都返回结果4先来还原一下:In[1]:round(4.5)Out[1]:4In[2]:importnumpyasnpIn[3]:np.round(4.5)Out[3]:4.0如果再看一个例子,四舍五入保留小数点后1位,发现它又是进位的:In[1...
2022-09-23 23:17:14
1690
原创 一步一步理解机器学习的ROC曲线
你好,我是zhenguoROC曲线是评估机器学习模型分类能力最常用的一条曲线,那么你知道:ROC曲线x,y轴各代表什么含义?ROC曲线上的一个点代表什么含义?这两个问题在面试中也常会被问道,不妨抽几分钟时间理解我下面的这篇小总结。二分类混淆矩阵下面是二分类的混淆矩阵,这个不难理解,P或N代表结果,T或F代表预测对与否:基于二分类混淆矩阵,我们再来探讨关于ROC曲线上面提出的两个问题。ROC曲线x,...
2022-09-03 12:44:26
1501
原创 机器学习分类问题:9个常用的评估指标总结
你好,我是zhenguo对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1 Confusion Matrix这是衡量分类问题性能的最简单方法,其中输出可以是两种或更多类型的类。混淆矩阵只不过是一个具有两个维度的表,即“实际”和“预测”,此外,这两个维度都有“真阳性(TP)”、“真阴性(TN)”、“假阳性(...
2022-09-02 06:17:59
622
转载 机器学习常用算法:随机森林分类
机器学习模型通常分为有监督和无监督学习算法。当我们定义(标记)参数时创建监督模型,包括相关的和独立的。相反,当我们没有定义(未标记)参数时,使用无监督方法。在本文中,我们将关注一个特定的监督模型,称为随机森林,并将演示泰坦尼克号幸存者数据的基本用例。在深入了解随机森林模型的细节之前,重要的是定义决策树、集成模型、Bootstrapping,这些对于理解随机森林模型至关重要。决策树用于回归和分类问题...
2022-08-31 22:17:17
1814
转载 模型调参和超参数优化的4个工具
作者 Bunmi Akinremi我清楚地记得两年前参加的一次机器学习黑客马拉松,当时我正处于数据科学职业生涯的初期。这是由尼日利亚数据科学组织的训练营的资格预审黑客马拉松。该数据集包含有关某些员工的信息。我必须预测员工是否应该升职。在尝试改进和设计功能几天后,该模型的准确率似乎在 80% 左右波动。我需要做点什么来提高我在排行榜上的分数。我开始手动调整模型——得到了更好的结果。通过更改参数,移动...
2022-08-30 13:00:36
713
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人