r 保留之前曲线_R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量...

我根据泊松Poisson回归、GAM样条曲线模型对一个十字路口的骑自行车者的数量进行预测,

str(base)

'data.frame': 214 obs.

$ 日期 : chr "1-Apr" "2-Apr" "3-Apr7" "4-Apr" ...

$ 最高温度 : num 46 62.1 63 51.1 63 48.9 48 55.9 66 73.9 ...

$ 最低温度 : num 37 41 50 46 46 41 43 39.9 45 55 ...

$ 降雨量 : num 0 0 0.03 1.18 0 0.73 0.01 0 0 0 ...

$ 数量: int 606 2021 2470 723 2807 461 1222 1674 2375 3324

...

$ 温差 : num 9 21.1 13 5.1 17 7.9 5 16 21 18.9 ......

使用Poisson回归预测周日、周一有多少骑自行车的人,天气情况是温度85F-70F没有下雨。我们创建一个预测数据框。

newbase = data.frame(DAY=as.factor(

最高温度=c(85,85),最低温度=c(70,70,

降雨量=c(0,0))

让我们创建一个包含所有解释变量的模型。

我们还添加一个虚拟变量来指示不下雨的日子,

summary(reg)

Coefficients:

Estimate Std. Error z value Pr(|z|)

(Intercept) 6.8844970 0.0110463 623.241 2e-16 ***

最高温度 0.0210950 0.0003133 67.328 2e-16 ***

最低温度 -0.0114006 0.0003351 -34.024 2e-16 ***

降雨量 -0.6570450 0.0071899 -91.384 2e-16 ***

I(降雨量 == 0)TRUE 0.1303908 0.0033283 39.176 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 70021 on 213 degrees of freedom

Residual deviance: 26493 on 203 degrees of freedom

AIC: 28580

Number of Fisher Scoring iterations: 4

所以变量似乎都显著。如果我们要检查非线性效应,可以将样条曲线放在所有连续变量上

gam(数量~bs(最高温度)+bs(最低温度)+bs(降雨量)+I(降雨量==0),poisson

a4c26d1e5885305701be709a3d33442f.png

最高温度或最低温度

a4c26d1e5885305701be709a3d33442f.png

以及下面的降雨量曲线,最大观测值(3)与之前观测值(1.8)之间的线性平滑

a4c26d1e5885305701be709a3d33442f.png

我们还可以回归最小温度,以及最大和最小温度之间的温差(在线性模型中,模型是等效的,但是通过非线性变换,可以更简单地给出差异)

a4c26d1e5885305701be709a3d33442f.png

现在,我们可以比较这四个模型及其预测。例如,对于线性模型(虚拟变量表示没有下雨),

predict(reg,newdata=newbase,type="response se.fit=TRUE

对于星期一,我们获得λ的95%置信区间

P$fit[1]+c(-2,2)*P$se.fit[1]

[1] 3349.842 3401.395

对于星期日,95%置信区间为

[1] 2987.497 3033.861

我们可以可视化四个模型的置信区间

a4c26d1e5885305701be709a3d33442f.png

而周日,我们有

a4c26d1e5885305701be709a3d33442f.png

换句话说,通过更改模型,我们对预测的置信区间进行了更改(有时区间完全不相交)。

a4c26d1e5885305701be709a3d33442f.png

最受欢迎的见解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值