3,设有矩阵A 和B 123453
0166789101769A ,11
12131415023416171819209
7021
22
23
24
254
13
11B ????
????-?
???????==-????????????????
1、求它们的乘积C ;
2、将矩阵C 的右下角3*2子矩阵赋给D ;
3、察看matlab 工作空间的使用情况。
>>
A=[1,2,3,4,5;6,7,8,9,10;11,12,13,14,15;16,17,18,19,20;21,22,23,24,25]
A =
1 2 3 4 5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
>> B=[3,0,16;17,-6,9;0,23,-4;9,7,0;4,13,11] B =
3 0 16 17 -6 9 0 23 -4
9 7 0 4 13 11 >> C=A*B C =
93 150 77 258 335 237 423 520 397 588 705 557 753 890 717 >> D=C(3:5,2:3) D =
520 397 705 557 890 717
2, 用符号方法求下列极限或导数 (1)sin tan 3
(1)2(1)sin lim
x
x
x x e
e x
→+--
(2)已知3
cos ln x
a t
A t x x ??=?
???
,
分别求d A d x 、22d A dt 、2
d A dxdt >> syms x
s=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(sin(x)^3) Lsk=limit(s,x,0) s =
(x*(exp(sin(x)) + 1) - 2*exp(tan(x)) + 2)/sin(x)^3 Lsk = -1/2
(2)>> syms a t x
>> A=[a^x,t^3;t*cos(x),log(x)] A =
[ a^x, t^3] [ t*cos(x), log(x)]
>> df=diff(A) dfdt2=diff(A,t,2) dfdxdt=diff(diff(A,x),t) df =
[ a^x*log(a), 0] [ -t*sin(x), 1/x] dfdt2 = [ 0, 6*t] [ 0, 0] dfdxdt =
[ 0, 0] [ -sin(x), 0]
1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。 1)、22sin 8511z e
=
+
2)
、2
121
2l n (10.4552i z x x +??
=+=?
?
-??其中
(1)>> z1=(2*sin(85/180*pi))/(1+exp(2))
z1 =
0.2375
>> whos
Name Size Bytes Class
z1 1x1 8 double array Grand total is 1 element using 8 bytes (2)>> syms x i
x=[2,1+2*i;-0.45,5]
z2=0.5*log(x+sqrt(1+x^2))