MATLAB符号运算——极限

本文介绍了MATLAB中进行符号运算的极限功能,详细讲解了极限的概念,并提供了使用limit函数计算极限的语法。通过具体示例,如求解sin(x)/x、(x-2)/(x^2-4)、(1+2*t/x)^(3*x)和(sinh(x+h)-sinh(x))/h的极限,展示了如何在MATLAB中进行极限计算,包括左右极限的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

符号运算主要是结合高等数学和微积分的知识
常用的符号运算有极限、微分、积分等

极限

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”

在MATLAB中计算极限

函数:limit
调用格式:

syms ;                   %定义变量,有几个变量就定义几个
g=limit (f);             %f为所求式子的极限,默认趋向于0
g=limit (f,a);           %f为所求式子趋于a的极限
g=limit (f,x,a);         %f为所求极限的式子,x为对x求极限(因为有些式子会有多个变量,比如x、t、h等),a为趋向于a
g=limit (f,x,a,'left');  %f为式子,x为对x求,a为趋向于a,left为求左极限
g=limit (f,x,a,'right'); %f为式子,x为对x求,a为趋向于a,right为求右极限

例:求以下的极限:
在这里插入图片描述

syms x;
limit(sin(x)/x)
syms x;
limit((x-2)/(x^2-4),2)
syms x t;
limit((1+2*t/x)^(3*x),x,inf)
syms x h;
limit((sin(x+h)-sin(x))/h,h,0);

如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华毓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值