扫码下载「CSDN程序员学院APP」,1000+技术好课免费看
APP订阅课程,领取优惠,最少立减5元 ↓↓↓
订阅后:请点击此处观看视频课程
视频教程-大数据Spark实战视频教程-Spark
学习有效期:永久观看
学习时长:2477分钟
学习计划:42天
难度:中
「口碑讲师带队学习,让你的问题不过夜」
讲师姓名:张长志
CTO/CIO/技术副总裁/总工程师
讲师介绍:张长志技术全才、擅长领域:区块链、大数据、Java等。10余年软件研发及企业培训经验,曾为多家大型企业提供企业内训如中石化,中国联通,中国移动等知名企业。拥有丰富的企业应用软件开发经验、深厚的软件架构设计理论基础及实践能力。项目开发历程:基于大数据技术推荐系统 ,医疗保险大数据分析与统计推断,H5跨平台APP,携程酒店APP,Go语言实现Storm和ZK类似框架。
☛点击立即跟老师学习☚
「你将学到什么?」
大数据Spark实战视频培训教程:本课程内容涉及,Spark虚拟机安装、Spark表配置、平台搭建、快学Scala入门、Spark集群通信、任务调度、持久化等实战内容。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
「课程学习目录」
第1章:Spark实战part1 |
1.1.spark介绍_整体架构_源码下载 |
2.2.spark虚拟机安装_centos安装 |
3.3.网络配置与关闭防火墙 |
4.4.操作远程工具的使用(winscp_CRT) |
5.5.yum配置 |
6.6.jdk安装 |
7.7.配置集群ssh免密码登录 |
8.8.hadoop安装 |
9.9.hive与mysql安装与链接 |
10.10.zookeeper安装 |
11.11.scala安装 |
12.12.kafka安装 |
13.13.spark安装 |
14.14wordcount小程序 |
第2章:Spark实战part2 |
1.1.架构图 |
2.2.案例讲解 |
3.3.通过scala计算wordcount |
4.4.scala在window上面安装与path配置 |
5.5.scala简单语法的介绍 |
6.6.scala类的编写和演示 |
7.8.IDAE的安装与配置 |
8.9函数与方法的转换 |
9.10添加数组与遍历数组 |
10.11元组集合操作 |
11.12可变类型map set |
12.13 scala常用的函数通过小案例讲解 |
13.14scala单词统计案例讲解 |
第3章:Spark实战part3 |
1.1回顾昨天语法 |
2.2类与伴随对象的权限讲解 |
3.3构造方法讲解 |
4.4.辅助构造器 |
5.5.单利对象与伴生对象 |
6.6短信案例分享 |
7.7apply方法 |
8.8scala继承与实现 |
9.9匹配字符串_类型_数组_元组 |
10.10可选函数_偏函数 |
11.11scala基础语法回顾 |
12.12actor多线程案例讲解 |
第4章:Spark实战part4 |
1.1回顾类对象_Actor |
2.2单机版本的wordcount |
3.3.架构 |
4.4分享 |
5.5回顾ActorWorCount |
6.6spark一个简单的运算过程 |
7.7柯里化 |
8.8在IDEA里面搭建maven工程 |
9.9代码实现spark集群Master与worker通信 |
10.10在IDEA里面通过maven打jar |
第5章:Spark实战part5 |
1.1.wordcount原理回顾 |
2.2.隐士转换 |
3.3隐式转换2 |
4.4并行化操作 |
5.5transformation与action总体介绍 |
6.6统计每行出现的次数 |
7.7将集合中每个元素乘以2 |
8.8过滤出集合中的偶数 |
9.9flatMap案例_将文本行拆分为多个单词 |
10.10通过groupbyKey进行分组 |
11.11reduceByKey统计每个班级的总分 |
12.12sortbyKey学生分数进行排序 |
13.13join案例班级合并 |
14.14常用的action操作 |
15.15saveAsTextFile保存到hdfs |
第6章:Spark实战part6 |
1.1.任务调度器 |
2.2.任务调度器一个补充 |
3.3spark工作原理与RDD介绍 |
4.4maven安装 |
5.5sparkjava版本wordcount本地执行 |
6.6一些spark专业名词 |
7.7人人车爬虫分享 |
8.8项目分享 |
9.9spark_java版本的集群模式 |
10.10spark集群上面参数一些介绍 |
11.11spark_scala_单机版本 |
12.12spark_scala集群演示 |
13.12回顾spark架构 |
14.13服务器时间校准 |
15.14wordcount原理分析 |
16.15spark架构原理 |
第7章:Spark实战part7 |
1.1.持久化操作 |
2.2持久化一个补充 |
3.3accumulator与共享变量 |
4.4统计单词降序排列 |
5.5二次排序 |
6.6取出前三个排名最高的数据 |
7.7取出每个班级里面最高分数的三个学生 |
8.8sparlsql发展史 |
9.9sparksql_scala版本jar包替换 |
10.10spark中RDD与DateFrame互相转换 |
11.11通过反射讲RDD转换为DataFrame_java版本 |
12.12通过反射讲RDD转换为DataFrame_scala版本 |
第8章:Spark实战part8 |
1.1.回顾_动态将RDD转换成DF |
2.2.动态将RDD转换成DF_scala版本 |
3.3.通用的load和save操作 |
4.4手动指定数据源类型 |
5.5数据源Parquet之使用编程方式加载数据 |
6.6.编译新的hive源码 |
7.7.学生分享 |
8.8自动分区推断 |
9.9.合并元数据 |
10.10总结sparksql的作用 |
11.11JSON综合性复杂案例查询80分以上学生信息 |
12.12JSON综合性复杂案例查询80分以上学生信息_scala |
13.13hive数据源实战java版本 |
14.13hive数据源实战scala版本 |
第9章:Spark实战part9 |
1.1jdbc简介与创建数据库和表 |
2.2.spark_sql_java版本_jdbc |
3.3.mysql权限设置 |
4.4学生分享 |
5.6公司移动实战代码实战5根据移动公司数据统计家庭和工作地址业务介绍 |
6.6公司移动实战代码实战 |
7.7公司移动实战代码实战_第二种方法处理 |
8.8复习spark原理 |
9.9.公司移动实战读取文件夹 |
第10章:Spark实战part10 |
1.1.简单的回顾 |
2.2.sparkstream的介绍 |
3.3Spark Streaming基本工作原理 |
4.4.spark_streaming单词统计 |
5.5输入DStream之基础数据源 |
6.6sparkstream读取HDFS中的数据 |
7.7sparkstream读取kafka数据 |
8.8sparkstream读取kafka数据_direct方式 |
9.9updateStateByKey统计所以单词 |
第11章:Spark实战part11 |
1.1.sparkstreaming滑动窗口讲解 |
2.2.滑块统计最高搜索单词 |
3.3.公司业务流程介绍 |
4.4.手机项目流程 |
5.5.html简单介绍 |
6.6.简单介绍一下跨平台开发 |
7.7php和手机业务的介绍 |
8.8生成数据方式 |
9.9.简单分析一下业务流程 |
10.1 |
11.1 |
「7项超值权益,保障学习质量」
- 大咖讲解
技术专家系统讲解传授编程思路与实战。
- 答疑服务
专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。
- 课程资料+课件
超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)
- 常用开发实战
企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。
- 大牛技术大会视频
2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。
- APP+PC随时随地学习
满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。
「什么样的技术人适合学习?」
- 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
- 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
- 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。
「悉心打造精品好课,42天学到大牛3年项目经验」
【完善的技术体系】
技术成长循序渐进,帮助用户轻松掌握
掌握Spark知识,扎实编码能力
【清晰的课程脉络】
浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。
【仿佛在大厂实习般的课程设计】
课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。
「你可以收获什么?」
入门大数据,快速进入大数据spark领域
掌握Spark的多种部署模式、分布 式程序的开发
处理企业开发90%的内容,胜任企业80%的Spark应用开发