employee 表
id
name
gender
hire_date
salary
performance
manage
deparmant
1001
张三
男
2/12/1991 00:00:00
2000
200
500
营销部
1002
李四
男
5/8/1993 00:00:00
4000
500
营销部
1003
王五
女
12/13/1993 00:00:00
1000
100
5000
研发部
1004
赵六
男
8/19/1996 00:00:00
8000
1000
4000
财务部
1005
孙七
女
11/6/1997 00:00:00
5000
500
研发部
1006
周八
男
10/16/1994 00:00:00
6000
2000
1000
人事部
1007
吴九
女
9/22/1995 00:00:00
8000
1500
研发部
1008
郑十
女
10/25/1998 00:00:00
4000
900
人事部
1.SQL分组查询GroupBy+Group_concat
group by 是分组,是分组,是分组,分组并不是去重,而是分组
将查询结果按一个或多个进行分组,字段值相同的为一组
GroupBy+Group_concat : 表示分组之后,根据分组结果,使用 group_contact() 来放置每一组的每字段的值的集合
select deparmant, GROUP_CONCAT(`name`) from employee GROUP BY deparmant
根据 department 分组,通过 group_concat('name'),查看每组里面的姓名都有哪些
SELECT gender,GROUP_CONCAT(`name`) from employee GROUP BY gender
根据gender 分类,看 不同的 性别都有哪些 人
分组注意事项:在分组时,select后面跟的的字段一般都会出现在 group by 后
SELECT name,gender from employee GROUP BY gender,name
-- 先按gender分组,再按姓名分组...
2.SQL分组+聚合函数
select deparmant, GROUP_CONCAT(salary), SUM(salary),AVG(salary) 平均工资,MAX(salary) 最高工资 from employee GROUP BY deparmant;
-- 根据department 分组,计算各部门下工资总数,平均工资,最高工资![1532919789347](D:\Python\python_learning\Python_Blog\02\SQL\4.png)
-- 查询每个部门的部门名称以及每个部门的人数
SELECT deparmant, GROUP_CONCAT(`name`), COUNT(*) from employee GROUP BY deparmant
-- 查询每个部门的部门名称以及每个部门工资大于1500的人数
SELECT deparmant,GROUP_CONCAT(salary), COUNT(*) from employee WHERE salary > 1500 GROUP BY deparmant
3.SQL分组GroupBy+Having
group by + having 用来分组查询后指定一些条件来输出查询结果
having 和 where 一样,但 having 只能用于 group by
-- 查询工资总和大于 9000的部门名称
SELECT deparmant, GROUP_CONCAT(salary), SUM(salary) FROM employee
GROUP BY deparmant
HAVING SUM(salary) > 9000;
having 和 where 的区别:
having 是在分组后对数据进行过滤,where 是在分组前对数据进行过滤
having后面可以使用分组函数(统计函数),where后面不可以使用分组函数
where 是对分组前记录的条件,如果某行记录没有满足where字句的条件,那么这行记录不会参加分组;而having是对分组后数据的约束
-- 查询工资大于2000的,工资总和大于9000的部门名称以及工资和
select deparmant,GROUP_CONCAT(salary), SUM(salary) from employee
WHERE salary > 2000
GROUP BY deparmant
HAVING sum(salary) > 9000
ORDER BY SUM(salary) DESC;
4.sql语句书写顺序