工业物联网与机器学习在管道泄漏检测中的应用
背景简介
在当前的工业实践中,管道泄漏检测是一个关键环节,确保了资源的有效利用和环境的安全。随着技术的发展,特别是工业物联网(IIoT)和机器学习技术的进步,泄漏检测的方法变得更加智能和高效。本文将基于提供的书籍章节内容,探讨IIoT和机器学习在管道泄漏检测中的应用。
IIoT在管道泄漏检测中的应用
IIoT技术使得管道网络中的每个设备都能够相互连接,形成了一个复杂的设备网络。通过IIoT架构,管道泄漏检测的实时数据可以被迅速分析,以识别潜在的泄漏点。IIoT的使用使得原本需要大量人力介入的监测任务变得自动化,显著提高了检测的准确性和效率。
IIoT架构
通过连接设备、边缘网关、分析模块、服务网络和访问网络等组件,IIoT架构为管道泄漏检测提供了一个完整的解决方案。例如,传感器可以部署在管道的上游和下游,它们收集的数据通过边缘网关传输到分析单元,进行数据处理和泄漏预测。
机器学习在管道泄漏检测中的应用
机器学习技术,尤其是神经网络和支持向量机(SVM),已被证明在检测管道泄漏方面非常有效。这些算法能够从大量数据中学习模式,并准确预测泄漏事件。
神经网络策略
神经网络通过模拟人脑的工作方式,使用多个层的节点进行数据处理。它在数据预处理、特征提取和泄漏检测方面发挥着关键作用。例如,使用三层神经网络和S型激活函数,能够有效减少误差并提高泄漏检测的准确性。
支持向量机策略
SVM通过找到最佳超平面来对数据进行分类。在管道泄漏检测中,SVM能够处理包含泄漏信息和噪声的复杂数据集,并准确识别泄漏事件。
集成学习方法
集成学习方法通过结合多个模型来提高整体的分析准确性。在管道泄漏检测中,随机森林分类器作为一种集成学习模型,通过构建多个决策树并进行综合分析来提高检测的准确度。
集成学习设计
随机森林分类器将数据集分解成多个自助抽样样本,并只考虑选定的特征。然后将这些样本拟合到树中,并将结果平均,以得到最终的检测结果。这种模型的使用大大提高了检测的准确性和可靠性。
总结与启发
从上述讨论可以看出,IIoT和机器学习在管道泄漏检测领域中发挥着至关重要的作用。这些技术不仅提高了检测效率,还显著降低了人力成本。随着技术的不断进步,我们可以预见未来管道监测将变得更加智能化和自动化。
对于从事工业监测和维护的专业人士来说,了解和应用这些先进的技术是提高工作效率和响应速度的关键。同时,对于相关领域的研究人员和开发者,这些技术的应用提供了新的研究方向和开发机遇。
参考文献
- Amy Harder. "In an energy-hungry world, natural gas gaining the most", Axio.com, June 2019.
- Pydata 2018 Video (Youtube), Hot Water Leak Detection Using Variational Autoencoder Model—Jay Kim.
- Na, L. and Yanyan, Z., Application of Wavelet Packet and Support Vector Machine to Leak Detection in Pipeline. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008.
- Ibitoye, Olakunle & Shafiq, Omair & Matrawy, Ashraf. (2019). A Convolutional Neural Network Based Solution for Pipeline Leak Detection.
- Pipeline Stats in India, https://community.data.gov.in/length-of-natural-gas-pipelines-in-india-from-2010-to-2017/.
- Pipeline—data as per plot, https://www.indexmundi.com/energy/?product=gasoline&graph=consumption&display=rank.
- Where are pipelines located?, https://pipeline101.org/Where-Are-Pipelines-Located.
- Lim, K., Wong, L., Chiu, W.K., Kodikara, J., Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes. Struct. Control Hlth., 23, 2, 303–314, 2015.
- Gamboa-Medina, M.M., Ribeiro Reis, L.F., Capobianco Guido, R., Feature extraction in pressure signals for leak detection in water networks. Procedia Eng., 70, 688–697, 2014.
- US Oil and Gas Pipeline Stats, https://www.bts.gov/content/us-oil-and-gas-pipeline-mileage.
- Definition of IIoT, https://internetofthingsagenda.techtarget.com/definition/Industrial-Internet-of-Things-IIoT.
- Bolotina, I., Borikov, V., Ivanova, V., Mertins, K., Uchaikin, S., Application of phased antenna arrays for pipeline leak detection. J. Petrol. Sci. Eng., 161, 497–505, 2018.
- Adnan, N.F. et al., Leak detection in gas pipeline by acoustic and signal processing—A review. IOP Conf. Ser.: Mater. Sci. Eng., 100, 012013, 2015.
- Wang, L., Guo, N., Jin, C., Yu, C., Tam, H., Lu, C., BOTDA system using artificial neural network. 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, pp. 1–1, 2017.
- Shibata, A., Konishi, M., Abe, Y., Hasegawa, R., Watanabe, M., Kamijo, H., Neuro based classification of gas leakage sounds in pipeline. 2009 International Conference on Networking, Sensing and Control, 2009.
- Feng, W.-Q., Yin, J.-H., Borana, L., Qin, J.-Q., Wu, P.-C., Yang, J.-L., A network theory for BOTDA measurement of deformations of geotechnical structures and error analysis. Measurement, 146, 618–627, 2019.
- Three reasons why Oil will continue to run the world, https://www.forbes.com/sites/judeclemente/2015/04/19/three-reasons-oil-will-continue-to-run-the-world/.
- Chen, Y., Kuo, T., Kao, W., Tsai, J., Chen, W., Fan, K., An improved method of soil-gas sampling for pipeline leak detection: Flow model analysis and laboratory test. J. Nat. Gas Sci. Eng., 42, 226–231, 2017.
- Chen, H., Ye, H., Chen, L.V., Su, H., Application of support vector machine learning to leak detection and location in pipelines. Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), Como, Vol. 3, pp. 2273–2277, 2004.
- Thorley, A.R.D., Fluid Transients in Pipeline Systems, D&L George Limited, pp. 126–129, 1991.
- Tian, C.H., Yan, J.C., Huang, J., Wang, Y., Kim, D.-S., Yi, T., Negative pressure wave based pipeline Leak Detection: Challenges and algorithms. Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, 2012.
- Hou, Q. and Zhu, W., An EKF-Based Method and Experimental Study for Small Leakage Detection and Location in Natural Gas Pipelines. Appl. Sci., 9, 15, 3193, 2019.
- Peng, Z., Wang, J., Han, X., A study of negative pressure wave method based on Haar wavelet transform in ship piping leakage detection system. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, pp. 111–113, 2011.