如何用三元组表表示下列稀疏矩阵_12 图、网络、关联矩阵

本文介绍了将物理电路问题与图论结合的方法,通过关联矩阵表示图的结构,并探讨了稀疏矩阵在大规模图中的处理。文章详细阐述了矩阵的零空间和左零空间与图的环路关系,揭示了基尔霍夫电流定律和电压定律在解线性系统的应用。同时,讨论了如何利用图的环路数量来确定左零空间的维数,并提及了矩阵的迹与图中节点度的关系。
摘要由CSDN通过智能技术生成

25e2fed95a1acded13c0405bb458ff33.png

结合物理电路知识的线代思想,pdf版请移步到知识星球:42173863(免费)

12.1 图和网络

图的两要素:结点和边,下图中箭头表示流入和流出,数据结构中图论问题,每个结点的度等于入度个数减去出度个数,我们怎么去表示呢?

f8b494ec9349b8373bc4134b749456dc.png

可以用关联矩阵去描述这张图,图中以一个结点代表一列,每条边代表一行,则上图有4个结点,5条边,我们可以表示为:

第一行表示边1,结点流出计为-1,从结点2流入计为+1,所以第一行的第一列为-1,第二列为+1,以此类推。但是有一个问题,现实中的图很大时,形成的关联矩阵可能会很稀疏,这时候这个矩阵变为了稀疏矩阵,算法上处理效率会降低,可以考虑其他表示方法。通常,机器学习等为了处理稀疏性矩阵,会构造更为有效的数据结构,压缩稀疏行和列,或者通过PCA、SVD等方法来进行降维。

12.2 矩阵A的零空间

上图中,假设箭头表示电流的流向,则是一个有向图。求解零空间Ax=0。

假设x为结点上的电势,则Ax给出了每条边上的电势差。求解可以得到零空间dim N(A) = 1,基为[1 1 1 1],表示等电势。

矩阵A的列数为4,零空间维数为1,则矩阵的秩为3。

12.3 矩阵A的左零空间

左零空间是满足的向量y的集合。秩为3,5列,所以左零空间的维数为2。

y的分量值为边上的电流。如何求解这个左零空间的维数呢?我们可以把上边式子展开来:

有趣的事情开始了,看回最上面那个图,发现y1,y3,y4正好是流入和流出结点1的电流之和,熟悉的基尔霍夫电流定律出现了:节点流入和流出的电流之和为0,下面三个等式同理。所以我们就可以根据环的个数来确定A的左零空间的基了,上图有两个独立的环,所以左零空间的维数是2!

f8b494ec9349b8373bc4134b749456dc.png

上面的4个方程我们可以直接从图来解,而不是消元。思想是回路中的环流为0,就是熟悉的电流环路定理。设y1 = 1,则y2 = 1,y3 = -1。另一个环同理,我们解出:

ps:如不构成一个环,例如边1、4、2,则称为数。

12.4 规律

左零空间的维数 = 独立环的数量 = 边的数量 - (结点数量 - 1)

移位我们可以得到欧拉公式,对于所有图都成立:

e8a5da2fe9849403a209d7631f22248f.png

针对有源场,基尔霍夫定律方程变为了

, f就是外部电流。由

假设:

那么矩阵B是一个对称矩阵,求解矩阵的迹(等于矩阵特征值之和)会发现

这个10代表了图中所有结点的度的和!!!结点1的度是3(出度和入度之和),结点2的度是2,结点3的度是3,结点4的度是2!!!

翻归食饭。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值