在直角坐标系中,横轴表示样本数据的连续可取数值,按数据的最小值和最大值把样本数据分为m组,使最大值和最小值落在开区间(a,b)内,a略小于样本数据的最小值,b略大于样本数据的最大值。组距为d=(b-a)/m,各数据组的边界范围按左闭右开区间,如[a,a+d),[a+d,a+2d),……[a+(m-1)d,b)。纵轴表示频率除以组距(落在各组样本数据的个数称为频数,频数除以样本总个数为频率)的值,以频率和组距的商为高、组距为底的矩形在直角坐标系上来表示,由此画成的统计图叫做频率分布直方图。
中文名
频率分布直方图
外文名
Frequency distribution histogram横轴表示
样本数据的连续可取数值
纵轴表示
频率除以组距
众 数
图中最高矩形中点的横坐标
频率分布直方图基本概念
编辑
语音
各组频率之和的值为1,在频率分布直方图中表现为所有矩形的面积之和等于1。各组的平均频率密度是指组频率与组距的比值,是指该组内单位距离上的频率。以平均频率密度为纵坐标,取代频率分布直方图中的频率,所作的统计图称为平均频率密度直方图。平均频率密度直方图中所有矩形的面积之和等于1。也就是平均频率密度直方图中所有矩形的顶边与直方图两边界边及横轴围成的图形的面积等于1。当样本量不断增加而组距不断减小,每一组的平均频率密度就非常接近组中值处的频率密度,此时频率密度直方图的矩形顶边就非常接近一光滑曲线,该曲线就是频率密度函数曲线。简单来说:就是利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图,简称频率直方图。