C语言n阶strassen矩阵乘法,算法重拾之路strassen矩阵乘法

出处:http://blog.csdn.net/lttree

第一章:分治与递归

STRASSEN矩阵乘法

算法描述:

矩阵乘法是线性代数中最常见的问题之一,它在数值计算中有广泛的应用。设A 和 B 是两个n × n矩阵,它们的乘积AB同样是一个n×n矩阵。A和B的乘积矩阵C 中的元素cij定义为:

9de9062975d1fd4ca0652fe287a61053.gif

按照这个定义来看,计算A 与 B 矩阵乘法,至少需要 n 次乘法 与 n-1 次加法,所以可以知道,求矩阵C乘法的时间为O(n^3)

算法分析:

strassen矩阵乘法采用类似于 大数乘法 中的分治技术,将计算2个n阶矩阵乘积所需的时间改进到O(n^log7) ≈ O(n^2.81)

这个算法有个前提条件,必须是 两个n×n阶矩阵相乘,而且n必须为2的幂。

这样我们每次都可以把大矩阵分割成四个小矩阵:

fe1a2c5012c2599e03668204fa21b611.gif

由上面图可知:

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

如果 n=2 ,两个2×2阶矩阵乘法需要 8次乘法 和 4次加法。当子矩阵的阶数大于2时,为求两个子矩阵的乘积,可以继续将矩阵分块,直到子矩阵阶数降为2,这就是分治降阶的递归算法。

按照这个算法,计算2个n阶矩阵的乘积转化为计算8个n/2阶矩阵的乘积和4个 n/2阶 矩阵的加法。 而 2个 n/2阶矩阵的加法显然可以再O(n^2)时间内完成,由此可知上述算法的时间耗费T(n):

T(n) = O(1) 当n=2

= 8T(n/2)+O(n^2) 当n>2

Ok,解这个递归方程,发现 T(n) = O(n^3)。并没有减少!

这是因为,这个方法并没有减少矩阵的乘法次数,要改进这个算法的时间,必须减少乘法的次数,Strassen就提出了 对于2阶矩阵的乘积方法,只用了7次乘法,用了多次加减,但是效率依然上升了很多。

这 七次乘法为:

M1 = A11( B12 - B22 )

M2 = (A11 + A12)B22

M3 = (A21 +A22)B11

M4 = A22(B21 - B11)

M5 = (A11 + A22)(B11 + B22)

M6 = (A12 - A22)(B21 + B22)

M7 = (A11 - A21)(B11 + B12)

做完这七次乘法,通过一些加减就可以得到,最后矩阵的值:

C11 = M5 + M4 - M2 + M6

C12 = M1 + M2

C21 = M3 + M4

C22 = M5 + M1 - M3 - M7

这样做以后,它的时间T(n)为:

T(n) = O(1) 当n=2

= 7T(n/2)+O(n^2) 当n>2

解得 T(n) = O(n^log7) ≈ O(n^2.81)

程序代码:

const int N = 8; //Define the size of the Matrix

// 输入矩阵

template

void input(int n, T p[][N]) {

for(int i=0; i

for(int j=0; j

cin>>p[i][j];

}

// 输出矩阵

template

void output(int n, T C[][N]) {

for(int i=0; i

for(int j=0; j

cout<

}

cout<

}

}

// 普通的矩阵乘法

template

void Matrix_Mul(T A[][N], T B[][N], T C[][N]) {

for(int i=0; i<2; i++) {

for(int j=0; j<2; j++) {

C[i][j] = 0;

for(int k=0; k<2; k++) {

C[i][j] = C[i][j] + A[i][k]*B[k][j];

}

}

}

}

// 矩阵加法 C=A+B

template

void Matrix_Add(int n, T A[][N], T B[][N], T C[][N]) {

for(int i=0; i

for(int j=0; j

C[i][j] = A[i][j] + B[i][j];

}

}

}

// 矩阵减法 C=A-B

template

void Matrix_Sub(int n, T A[][N], T B[][N], T C[][N]) {

for(int i=0; i

for(int j=0; j

C[i][j] = A[i][j] - B[i][j];

}

}

}

// strassen矩阵乘法

template

void Strassen(int n, T A[][N], T B[][N], T C[][N]) {

// 将第一个矩阵A分割成四个小矩阵

T A11[N][N], A12[N][N], A21[N][N], A22[N][N];

// 将第二个矩阵B分割成四个小矩阵

T B11[N][N], B12[N][N], B21[N][N], B22[N][N];

// M1~M7 先存起来,为后面最终C矩阵做准备

T M1[N][N], M2[N][N], M3[N][N], M4[N][N], M5[N][N], M6[N][N], M7[N][N];

// 四个小矩阵C 最后组合成大矩阵

T C11[N][N], C12[N][N], C21[N][N], C22[N][N];

// 中间变量

T tempA[N][N], tempB[N][N];

if(n == 2) {

Matrix_Mul(A, B, C);

}

else {

//将矩阵A和B分成阶数相同的四个子矩阵,即分治思想。

for(int i=0; i

{

for(int j=0; j

{

A11[i][j] = A[i][j];

A12[i][j] = A[i][j+n/2];

A21[i][j] = A[i+n/2][j];

A22[i][j] = A[i+n/2][j+n/2];

B11[i][j] = B[i][j];

B12[i][j] = B[i][j+n/2];

B21[i][j] = B[i+n/2][j];

B22[i][j] = B[i+n/2][j+n/2];

}

}

/* ****** 分别计算 M1~M7 ****** */

//Calculate M1 = (A0 + A3) × (B0 + B3)

Matrix_Add(n/2, A11, A22, tempA);

Matrix_Add(n/2, B11, B22, tempB);

Strassen(n/2, AA, BB, M1);

//Calculate M2 = (A2 + A3) × B0

Matrix_Add(n/2, A21, A22, tempA);

Strassen(n/2, tempA, B11, M2);

//Calculate M3 = A0 × (B1 - B3)

Matrix_Sub(n/2, B12, B22, tempB);

Strassen(n/2, A11, tempB, M3);

//Calculate M4 = A3 × (B2 - B0)

Matrix_Sub(n/2, B21, B11, tempB);

Strassen(n/2, A22, tempB, M4);

//Calculate M5 = (A0 + A1) × B3

Matrix_Add(n/2, A11, A12, tempA);

Strassen(n/2, tempA, B22, M5);

//Calculate M6 = (A2 - A0) × (B0 + B1)

Matrix_Sub(n/2, A21, A11, tempA);

Matrix_Add(n/2, B11, B12, tempB);

Strassen(n/2, tempA, tempB, M6);

//Calculate M7 = (A1 - A3) × (B2 + B3)

Matrix_Sub(n/2, A12, A22, tempA);

Matrix_Add(n/2, B21, B22, tempB);

Strassen(n/2, tempA, tempB, M7);

//Calculate C1 = M1 + M4 - M5 + M7

Matrix_Add(n/2, M1, M4, tempA);

Matrix_Sub(n/2, M7, M5, tempB);

Matrix_Add(n/2, tempA, tempB, C11);

//Calculate C2 = M3 + M5

Matrix_Add(n/2, M3, M5, C12);

//Calculate C3 = M2 + M4

Matrix_Add(n/2, M2, M4, C21);

//Calculate C4 = M1 - M2 + M3 + M6

Matrix_Sub(n/2, M1, M2, tempA);

Matrix_Add(n/2, M3, M6, tempB);

Matrix_Add(n/2, tempA, tempB, C22);

//将四个子矩阵组合回大矩阵 C[][N]

for(int i=0; i

{

for(int j=0; j

{

C[i][j] = C11[i][j];

C[i][j+n/2] = C12[i][j];

C[i+n/2][j] = C21[i][j];

C[i+n/2][j+n/2] = C22[i][j];

}

}

}

}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Strassen矩阵乘法算法是一种用于计算两个矩阵乘积的高效方法,其基本思想是将原始矩阵划分为较小的子矩阵,并通过递归调用来计算乘积。下面是使用C语言实现Strassen矩阵乘法算法的一个示例: ```c #include<stdio.h> void strassen(int n, int A[][n], int B[][n], int C[][n]) { if (n == 1) { C[0][0] = A[0][0] * B[0][0]; return; } // 计算矩阵的中间大小 int half = n / 2; // 划分原始矩阵为四个子矩阵 int A11[half][half], A12[half][half], A21[half][half], A22[half][half]; int B11[half][half], B12[half][half], B21[half][half], B22[half][half]; int C11[half][half], C12[half][half], C21[half][half], C22[half][half]; int P[half][half], Q[half][half], R[half][half], S[half][half], T[half][half], U[half][half], V[half][half]; // 初始化子矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { A11[i][j] = A[i][j]; A12[i][j] = A[i][j + half]; A21[i][j] = A[i + half][j]; A22[i][j] = A[i + half][j + half]; B11[i][j] = B[i][j]; B12[i][j] = B[i][j + half]; B21[i][j] = B[i + half][j]; B22[i][j] = B[i + half][j + half]; } } // 递归调用计算子矩阵 strassen(half, A11, B11, P); strassen(half, A12, B21, Q); strassen(half, A11, B12, R); strassen(half, A12, B22, S); strassen(half, A21, B11, T); strassen(half, A22, B21, U); strassen(half, A21, B12, V); // 计算结果矩阵的子矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { C11[i][j] = P[i][j] + Q[i][j]; C12[i][j] = R[i][j] + S[i][j]; C21[i][j] = T[i][j] + U[i][j]; C22[i][j] = R[i][j] + T[i][j] + U[i][j] + V[i][j]; } } // 将子矩阵组合为结果矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { C[i][j] = C11[i][j]; C[i][j + half] = C12[i][j]; C[i + half][j] = C21[i][j]; C[i + half][j + half] = C22[i][j]; } } } int main() { int n; printf("请输入矩阵维度n:"); scanf("%d", &n); int A[n][n], B[n][n], C[n][n]; printf("请输入矩阵A:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { scanf("%d", &A[i][j]); } } printf("请输入矩阵B:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { scanf("%d", &B[i][j]); } } strassen(n, A, B, C); printf("结果矩阵C:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%d ", C[i][j]); } printf("\n"); } return 0; } ``` 这个示例代码实现了一个递归的Strassen矩阵乘法算法。用户需要在运行代码时输入矩阵的维度n,以及矩阵A和B的元素。程序将计算A和B的乘积,并打印结果矩阵C。 ### 回答2: Strassen矩阵乘法算法是一种用于快速计算矩阵乘法算法,采用分治策略,并且在一些情况下具有比传统算法更高的效率。下面是一个使用C语言实现Strassen矩阵乘法算法的例子: ```c #include <stdio.h> #include <stdlib.h> void strassen(int n, int A[][n], int B[][n], int C[][n]) { if (n == 2) { // 基本情况,直接使用传统算法计算 int P = (A[0][0] + A[1][1]) * (B[0][0] + B[1][1]); int Q = (A[1][0] + A[1][1]) * B[0][0]; int R = A[0][0] * (B[0][1] - B[1][1]); int S = A[1][1] * (B[1][0] - B[0][0]); int T = (A[0][0] + A[0][1]) * B[1][1]; int U = (A[1][0] - A[0][0]) * (B[0][0] + B[0][1]); int V = (A[0][1] - A[1][1]) * (B[1][0] + B[1][1]); C[0][0] = P + S - T + V; C[0][1] = R + T; C[1][0] = Q + S; C[1][1] = P + R - Q + U; } else { int newSize = n/2; int A11[newSize][newSize], A12[newSize][newSize], A21[newSize][newSize], A22[newSize][newSize]; int B11[newSize][newSize], B12[newSize][newSize], B21[newSize][newSize], B22[newSize][newSize]; int C11[newSize][newSize], C12[newSize][newSize], C21[newSize][newSize], C22[newSize][newSize]; int P1[newSize][newSize], P2[newSize][newSize], P3[newSize][newSize], P4[newSize][newSize], P5[newSize][newSize], P6[newSize][newSize], P7[newSize][newSize]; int i, j; for (i = 0; i < newSize; i++) { for (j = 0; j < newSize; j++) { A11[i][j] = A[i][j]; A12[i][j] = A[i][j + newSize]; A21[i][j] = A[i + newSize][j]; A22[i][j] = A[i + newSize][j + newSize]; B11[i][j] = B[i][j]; B12[i][j] = B[i][j + newSize]; B21[i][j] = B[i + newSize][j]; B22[i][j] = B[i + newSize][j + newSize]; } } strassen(newSize, A11, B11, P1); strassen(newSize, A12, B21, P2); strassen(newSize, A11, B12, P3); strassen(newSize, A12, B22, P4); strassen(newSize, A21, B11, P5); strassen(newSize, A22, B21, P6); strassen(newSize, A21, B12, P7); for (i = 0; i < newSize; i++) { for (j = 0; j < newSize; j++) { C11[i][j] = P1[i][j] + P4[i][j] - P5[i][j] + P7[i][j]; C12[i][j] = P3[i][j] + P5[i][j]; C21[i][j] = P2[i][j] + P4[i][j]; C22[i][j] = P1[i][j] + P3[i][j] - P2[i][j] + P6[i][j]; C[i][j] = C11[i][j]; C[i][j + newSize] = C12[i][j]; C[i + newSize][j] = C21[i][j]; C[i + newSize][j + newSize] = C22[i][j]; } } } } int main() { int n = 4; // 矩阵维数 int A[][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}; int B[][4] = {{17, 18, 19, 20}, {21, 22, 23, 24}, {25, 26, 27, 28}, {29, 30, 31, 32}}; int C[4][4]; strassen(n, A, B, C); int i, j; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { printf("%d ", C[i][j]); } printf("\n"); } return 0; } ``` 以上是一个简单的C语言实现的Strassen矩阵乘法算法。在此例子中,我们使用了一个4x4的矩阵作为输入,并打印出计算结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值