给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。返回被除数 dividend 除以除数 divisor 得到的商。
示例1:
输入: dividend = 10, divisor = 3
输出: 3
示例2:
输入: dividend = 7, divisor = -3
输出: -2
说明:
1、被除数和除数均为 32 位有符号整数。
2、除数不为 0。
3、假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
思路:
这道题看起来似乎很简单,实则到处都是坑,最直接的思路就是在dividend和divisor都为正数的前提下,循环用被除数dividend减除数divisor,减法进行的次数则为最后除法所得的商。因此,需要做一些预处理:1)将dividend和divisor转化为正数来处理;2)c++中int整型范围有限,需要转化为long型来处理,那么初步代码如下:
class Solution {
public:
int divide(int dividend, int divisor) {
if(dividend==0) return 0;
bool flag = true;
long res = 0;
if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){
flag = false;
}
long tmpDividend = (long)dividend;
long tmpDivisor = (long)divisor;
if(tmpDividend < 0){
tmpDividend = -tmpDividend;
}
if(tmpDivisor < 0){
tmpDivisor = -tmpDivisor;
}
while(tmpDividend >= tmpDivisor){
tmpDividend -= tmpDivisor;
res += 1;
}
if(flag){
if(res > INT_MAX){
return INT_MAX;
}else{
return (int)res;
}
}else{
if(-res < INT_MIN){
return INT_MIN;
}else{
return (int)(-res);
}
}
}
};
但是很遗憾,OJ给的结果是超时:
分析上面算法的时间复杂度可知,当dividend非常大、而divisor非常小时(比如下图给出的test case),那while循环中需要进行减法的次数将会非常大,时间复杂度为O(dividend),所以有没有什么办法可以减小耗时呢?分析可知,循环中每次减的数都是divisor,那是否可以提高减法的效率呢?比如成倍扩大divisor,同时成倍增加减法次数k,代码如下:
class Solution {
public:
int divide(int dividend, int divisor) {
if(dividend==0) return 0;
bool flag = true;
long res = 0;
if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){
flag = false;
}
long tmpDividend = (long)dividend;
long tmpDivisor = (long)divisor;
if(tmpDividend < 0){
tmpDividend = -tmpDividend;
}
if(tmpDivisor < 0){
tmpDivisor = -tmpDivisor;
}
while(tmpDividend >= tmpDivisor){
long k = 1;
long tmp = tmpDivisor;
while(tmpDividend >= tmp){
tmpDividend -= tmp;
res += k;
k += k;
tmp += tmp; //扩大1倍
}
}
if(flag){
if(res > INT_MAX){
return INT_MAX;
}else{
return (int)res;
}
}else{
if(-res < INT_MIN){
return INT_MIN;
}else{
return (int)(-res);
}
}
}
};
OJ险过,很显然这个算法的时间复杂度和空间复杂度依然不太优秀,但是题解区的一些解法思路让我累觉不爱,有些实在是没看懂,姑且按这个易懂的思路来吧。