求两整数相除_29.两数相除

给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。返回被除数 dividend 除以除数 divisor 得到的商。

示例1:

输入: dividend = 10, divisor = 3
输出: 3

示例2:

输入: dividend = 7, divisor = -3
输出: -2

说明:

1、被除数和除数均为 32 位有符号整数。
2、除数不为 0。
3、假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−2^31,  2^31 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

思路:

这道题看起来似乎很简单,实则到处都是坑,最直接的思路就是在dividend和divisor都为正数的前提下,循环用被除数dividend减除数divisor,减法进行的次数则为最后除法所得的商。因此,需要做一些预处理:1)将dividend和divisor转化为正数来处理;2)c++中int整型范围有限,需要转化为long型来处理,那么初步代码如下:

class Solution {
public:
    int divide(int dividend, int divisor) {
        if(dividend==0) return 0;
        bool flag = true;
        long res = 0;
        if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){
            flag = false;
        }
        long tmpDividend = (long)dividend;
        long tmpDivisor = (long)divisor;
        if(tmpDividend < 0){
            tmpDividend = -tmpDividend;
        }
        if(tmpDivisor < 0){
            tmpDivisor = -tmpDivisor;
        }
        while(tmpDividend >= tmpDivisor){
            tmpDividend -= tmpDivisor;
            res += 1;
        }
        if(flag){
            if(res > INT_MAX){
                return INT_MAX;
            }else{
                return (int)res;
            }
        }else{
            if(-res < INT_MIN){
                return INT_MIN;
            }else{
                return (int)(-res);
            }
        }
    }
};

但是很遗憾,OJ给的结果是超时:

95c8cf24fa9336e3dcdd906f52f15114.png

分析上面算法的时间复杂度可知,当dividend非常大、而divisor非常小时(比如下图给出的test case),那while循环中需要进行减法的次数将会非常大,时间复杂度为O(dividend),所以有没有什么办法可以减小耗时呢?分析可知,循环中每次减的数都是divisor,那是否可以提高减法的效率呢?比如成倍扩大divisor,同时成倍增加减法次数k,代码如下:

class Solution {
public:
    int divide(int dividend, int divisor) {
        if(dividend==0) return 0;
        bool flag = true;
        long res = 0;
        if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){
            flag = false;
        }
        long tmpDividend = (long)dividend;
        long tmpDivisor = (long)divisor;
        if(tmpDividend < 0){
            tmpDividend = -tmpDividend;
        }
        if(tmpDivisor < 0){
            tmpDivisor = -tmpDivisor;
        }
        while(tmpDividend >= tmpDivisor){
            long k = 1;
            long tmp = tmpDivisor;
            while(tmpDividend >= tmp){
                tmpDividend -= tmp;
                res += k;
                
                k += k;
                tmp += tmp; //扩大1倍
            }
        }
        if(flag){
            if(res > INT_MAX){
                return INT_MAX;
            }else{
                return (int)res;
            }
        }else{
            if(-res < INT_MIN){
                return INT_MIN;
            }else{
                return (int)(-res);
            }
        }
    }
};

OJ险过,很显然这个算法的时间复杂度和空间复杂度依然不太优秀,但是题解区的一些解法思路让我累觉不爱,有些实在是没看懂,姑且按这个易懂的思路来吧。

03ba1156795204801662790ec264dc60.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值