利用matlab进行灰色预测,灰色预测matlab程序,灰色预测模型matlab,matlab灰色预测,matlab灰色预测代码,matlab灰色预测工具箱,灰色预测的matlab程序,matlab灰色预测m文件,灰色预测法matlab,小波灰色预测matlab
利用Matlab 进行灰色预测
利用matlab 进行灰色预测
一、灰色预测
灰色预测是指利用 GM (1,1) 模型,对系统的行为特征及其发展规律进行
估计和预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,对未
来时段时间发生的情况进行预测。灰色预测的本质上是将“随机过程”中的“随
机变量”当作灰色理论中的“灰变量”,利用灰度的概念去处理变化规律并不明
显的事件,并以灰色系统理论中的GM(1,1)模型来进行处理。
灰色预测在工业、农业、商业等经济领域,以及环境、社会和军事等领域中
都有广泛的应用。特别是依据目前已有的数据对未来的发展趋势做出预测分析。
1. 灰色预测方法
设已知参考数据列为x(0) (x(0) (1),x(0) (2), ,x(0) (n)) ,做1 次累加(AGO )
生成数列
x (1) (x (1) (1), x (1) (2), , x (1) (n))
(x (1) (1), x (1) (1) x (0) (2), , x (1) (n 1) x (0) (n))
k
其中x (1) (k ) x (0) (i ) (k 1,2, ,n) 。
i 1
求出均值数列:z (1) (k ) 0.5x(1) (k ) 0.5x(1) (k 1), k 2,3, ,n
由此得到 z (1) (z (1) (2), z (1) (3), , z (1) (n))
建立灰微分方程:
x(0) (k ) az (1) (k ) b, k 2,3, ,n
相应的白化微分方程为
dx(1)
ax(1) (t) b
dt
z (1) (2) 1
设 T (0) (0) (0) T z (1) (3) 1,则由最小
u (a,b) , Y (x (2), x (3), , x (n)) , B
z (1) (n) 1
二乘法,求得使 ˆ ˆ T ˆ 达到最小值的
J (u ) (Y Bu ) (Y Bu )
ˆ T T 1 T
u (a,b) (B B) B Y 。
于是求解白化微分方程得:
b b
x (1) (k 1) (x (0) (1) )eak , k 1,2