利用Matlab进行灰色预测,利用matlab进行灰色预测.pdf

利用matlab进行灰色预测,灰色预测matlab程序,灰色预测模型matlab,matlab灰色预测,matlab灰色预测代码,matlab灰色预测工具箱,灰色预测的matlab程序,matlab灰色预测m文件,灰色预测法matlab,小波灰色预测matlab

利用Matlab 进行灰色预测

利用matlab 进行灰色预测

一、灰色预测

灰色预测是指利用 GM (1,1) 模型,对系统的行为特征及其发展规律进行

估计和预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,对未

来时段时间发生的情况进行预测。灰色预测的本质上是将“随机过程”中的“随

机变量”当作灰色理论中的“灰变量”,利用灰度的概念去处理变化规律并不明

显的事件,并以灰色系统理论中的GM(1,1)模型来进行处理。

灰色预测在工业、农业、商业等经济领域,以及环境、社会和军事等领域中

都有广泛的应用。特别是依据目前已有的数据对未来的发展趋势做出预测分析。

1. 灰色预测方法

设已知参考数据列为x(0) (x(0) (1),x(0) (2), ,x(0) (n)) ,做1 次累加(AGO )

生成数列

x (1) (x (1) (1), x (1) (2), , x (1) (n))

(x (1) (1), x (1) (1) x (0) (2), , x (1) (n 1) x (0) (n))

k

其中x (1) (k ) x (0) (i ) (k 1,2, ,n) 。

i 1

求出均值数列:z (1) (k ) 0.5x(1) (k ) 0.5x(1) (k 1), k 2,3, ,n

由此得到 z (1) (z (1) (2), z (1) (3), , z (1) (n))

建立灰微分方程:

x(0) (k ) az (1) (k ) b, k 2,3, ,n

相应的白化微分方程为

dx(1)

ax(1) (t) b

dt

z (1) (2) 1

 

设 T (0) (0) (0) T z (1) (3) 1,则由最小

u (a,b) , Y (x (2), x (3), , x (n)) , B  

 

z (1) (n) 1

 

二乘法,求得使 ˆ ˆ T ˆ 达到最小值的

J (u ) (Y Bu ) (Y Bu )

ˆ T T 1 T

u (a,b) (B B) B Y 。

于是求解白化微分方程得:

b b

x (1) (k 1) (x (0) (1)  )eak  , k 1,2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值