更多CFA官方教材详解,请关注“边际实验室”公众号。
“边际实验室”是一家专注于金融科技、金融大数据领域的工作室,同时提供CFA、FRM等金融考试内容的免费讲解。
方差分析(ANOVA)是一种统计过程,用于将变量的总变化分解为可归因于不同来源的部分变化。在回归分析中,我们使用方差分析来确定一个或多个自变量在解释因变量变化中的作用。在方差分析中进行的重要统计检验方法是F检验。F统计量检验线性回归中的所有斜率系数是否都等于0。在具有一个自变量的回归中,便是对原假设H0:b1= 0(备择假设Ha:b1≠0)的检验。
为了正确确定斜率系数等于0的原假设的检验统计量,我们需要知道以下内容:
■观察总数(n);
■要估计的参数总数(在一个独立变量回归中,该数目为2:截距和斜率系数);
■残差的平方和,简称SSE。
■回归的平方和,简称RSS。该值是回归方程式中Y的总变化量。如下所示:

总变化(TSS)是SSE和RSS的总和。
用于确定斜率系数是否都等于0的F检验基于这四个值构造的F统计量。F统计量解释回归方程解释因变量的变化的程度。F统计量是平均RSS与平均SSE的比值。通过将回归的平方和除以估计斜率参数的数量(一元回归该数值为1)来计算平均RSS。平均SSE是通过将误差平方和除以观察数n减去估计参数的总数(一元回归该数值