python与opencv轮廓识别内外边界_在Python中使用OpenCV访问轮廓边界内的像素值

本文介绍如何在Python中使用OpenCV库,通过轮廓识别来获取图像对象内部的像素强度。首先,将图像转换为灰度,然后使用cv2.findContours找到轮廓。接着,对每个轮廓创建一个填充的二进制掩码,并利用np.where找到填充区域的像素位置,从而获取像素强度值。最后,将所有轮廓内部的强度值存储在lst_intensities列表中,以便后续访问。
摘要由CSDN通过智能技术生成

根据我们的注释,您可以创建一个numpy数组列表,其中每个元素都是描述每个对象轮廓内部的强度。具体来说,对于每个轮廓,创建一个填充轮廓内部的二进制掩码,找到填充对象的(x,y)坐标,然后索引到图像中并获取强度。

我不知道您是如何设置代码的,但假设您有一个灰度图像,名为img。您可能需要将图像转换为灰度,因为cv2.findContours可用于灰度图像。这样,通常调用cv2.findContours:import cv2

import numpy as np

#... Put your other code here....

#....

# Call if necessary

#img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Call cv2.findContours

contours,_ = cv2.findContours(img, cv2.RETR_LIST, cv2.cv.CV_CHAIN_APPROX_NONE)

contours现在是3Dnumpy数组的列表,其中每个数组的大小都是N x 1 x 2,其中N是每个对象的轮廓点总数。

因此,您可以这样创建我们的列表:# Initialize empty list

lst_intensities = []

# For each list of contour points...

for i in range(len(contours)):

# Create a mask image that contains the contour filled in

cimg = np.zeros_like(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值