根据我们的注释,您可以创建一个numpy数组列表,其中每个元素都是描述每个对象轮廓内部的强度。具体来说,对于每个轮廓,创建一个填充轮廓内部的二进制掩码,找到填充对象的(x,y)坐标,然后索引到图像中并获取强度。
我不知道您是如何设置代码的,但假设您有一个灰度图像,名为img。您可能需要将图像转换为灰度,因为cv2.findContours可用于灰度图像。这样,通常调用cv2.findContours:import cv2
import numpy as np
#... Put your other code here....
#....
# Call if necessary
#img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Call cv2.findContours
contours,_ = cv2.findContours(img, cv2.RETR_LIST, cv2.cv.CV_CHAIN_APPROX_NONE)
contours现在是3Dnumpy数组的列表,其中每个数组的大小都是N x 1 x 2,其中N是每个对象的轮廓点总数。
因此,您可以这样创建我们的列表:# Initialize empty list
lst_intensities = []
# For each list of contour points...
for i in range(len(contours)):
# Create a mask image that contains the contour filled in
cimg = np.zeros_like(