我对小样本学习的误解与困惑
我们的“小样本”真的很小吗?
我们似乎习惯性的拿深度学习的大量数据集训练,与人类婴儿做对比。并借此来嘲讽AI:You are not as good as me, you are loser.
但,最近的一些不连贯的思考,使我开始反思,我们人类小样本真的比机器学习与深度学习小吗?
然而,作为一名长期患有face blindness 的我。很难仅仅依赖图源信息完成"视觉图像上的"人⇒人的识别,还记得转学的时候(小学二年级由老家到保定借读),我除了听课以外,还要花大量的课堂时间,通过老师点名同学回答问题,来观察并记录全班同学的姓名,座位,以及声音。至少在刚刚入学的一大段时间里,我没有将所有的精力集中于听课,重心几乎全部放在了整合全班同学的身份标识上。
或许就像婴儿那样,只要是female就是妈妈,也或者依靠体味信息吧。我更多的是依赖于对声音与体态的运动特征,来对具体的对象进行再记忆。
在举一个极端的例子,就是萨尔路斯猎狼犬和哈士奇的图片与狼放到一起,我将很难分出哪条是狼,哪条是犬。
仅仅从以上脸盲症患者识别人的策略来对应图像识别技术。我们的“小样本”学习其实并不小,我们的足够多元。从维度上将我们具备五个维度:
广泛的图源表征、运动侦测、声音纹理、超曲面(三维景深/虚拟景深)、互动行为反馈。
我们至少基于该五类综合分析下的少量数据集,再最终落实到大量的图元数据的识别上。虽然我们的训练数据远远不及我们的AI,但我们有不同类型的学习样本,以及跨界信息整合关键要素的能力。仅在这一点上,我们的AI似乎只有单一的同类型图元信息标注集。
由此,我们对同一物体的识别上,我们的基数是5.0000xn :1.0000xn。若我们将单一图元信息列为小数点之后的数位标度,那么5.2与 1.7846195634956197546154616比谁更大一些哪?
在三维景深/虚拟景深,我们的大脑能够快速的完成超曲面的表征化,以及平面圆盘投影,就像“老顾谈几何”中对虚幻引擎所解构的那样。



