三元函数的几何图形一般是_二次函数常见综合题型的归类与解题思考

本文分析了中考二次函数的综合题型,重点关注动点与线段长度、图形面积的最值问题以及动点与几何图形存在性问题。通过对具体例题的解析,探讨了解题策略,包括利用相似三角形、锐角三角函数和分类讨论等方法,旨在帮助考生掌握此类题目的解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

28f1b0f677fde8ba243fc79f2350382c.png 5a3387d6b0cd639e1189cc415b2faca9.png

点击上方 蓝字 关注我们

18881b34423d236921768b6dbf24c301.png

作者:乌鲁木齐市第74中学:付雪娇

摘要:分析了中考二次函数压轴题的后几小问。将常见题型的考察归类总结,并根据不同题型,提炼概括了一些自己的解题心得。常见的有两大类问题:第一类,二次函数与线段长度、图形面积的最值问题;第二类,二次函数中动点与某个几何图形是否存在的问题,常见的有二次函数中动点与等腰三角形的存在性问题、与直角三角形的存在性问题、与相似三角形的存在性问题、与平行四边形的存在性问题。同时结合具体的中考真题,阐释如何形成该题的正确合理解题思路。

关键词:二次函数  综合题型  归类  解题

引言

在中学代数中,有一块儿很重要的内容,它就是二次函数。它既简单又具有丰富的内涵和外延。二次函数的研究是将“数”与“形”联系在一起,而联系它们的正是坐标。坐标将抽象的数与数的关系生动形象的刻画成了具体的平面直角坐标系里的图象。反过来,通过生成的图像去研究函数的性质,这是一个数→形→数的研究过程。如此以来,实际上对于一些我们学过的图形,尤其是非常规则的图形(非常规则的图形容易通过坐标展现在平面直角坐标系里)我们也可以通过坐标展现出数,这是形→数的过程。例如将等腰三角形、直角三角形、平行四边形等通过坐标展现在平面直角坐标系里。这些规则的图形有着各自特殊的性质与判定,再加上二次函数本身的各种性质,那么当同时出现在平面直角坐标系里时就会碰撞出各种复杂的题型。而数形结合思想至始至终贯穿着整道题的解决过程。 本文将二次函数的常见综合题型归结为两大类:第一类,二次函数与线段长度、图形面积的最值问题;第二类,二次函数中动点与某个几何图形是否存在的问题,常见的有二次函数中动点与等腰三角形的存在性问题、与直角三角形的存在性问题、与相似三角形的存在性问题、与平行四边形的存在性问题。 下面,本文将以两道中考题为代表对中考中二次函数综合题型进行归类分析,同时写了一些自己的解题心得。

第一种类型

        二次函数中动点与线段长度最值、动点与三角形相似的存在性问题 (2018·乌鲁木齐中考)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0)。 (1)求抛物线的解析式; (2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D. ①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由; ②当△PDC与△COA相似时,求点P的坐标.

205bd2470e1842486ed5b55f09965b58.png

【分析】                                              

(1)直接把点A(﹣2,0),B(8,0)代入抛物线的解析式中列二元一次方程组,解出可得结论;

(2)

方法一:

首先,看到PD,因为PD⊥BC,所以第一想法是三角形的高。在这个图中,若连接PB,那么以BC为底,随着点P的运动,当△PBC面积最大时,这条底上的高就最大。可是,△PBC的面积何时最大,或者怎样以其他方式衡量它的面积最大,需要解决这个问题。于是,观察到△BOC与△PBC构成了四边形COBP,而△BOC的面积是个定值。所以只需求出四边形COBP的最大面积,即可得到△PBC的最大面积。因为四边形不规则,所以需要将它分割,分割成一个直角梯形和一个直角三角形,再求最大面积。

方法二:

 想象点P运动情景,在“动中找静”。这么做的原因是因点P的运动引发的变量太多,而没有定值。我们需要通过研究影响PD的其他量间接地研究PD.而在几个与PD长度有关系的量中,必须只有一个量在变,剩余的量都是定值。当然这里的“几个”越少越好。再联系到垂直,于是想到了将PD构造成直角三角形的一条边,再去用锐角三角函数研究,即研究某个角和另外的某条边。当然要确保这两个量中的其中一个必须是定值,再去研究另一个量的变化趋势,还得容易研究才行。经过尝试,RT△PDC或者连接PB之后的RT△PDB都不可以,因为这样一来边角都是变量。因此需要添加辅助线。如何添加?得考虑到构造出的直角三角形中,是否有前面提到的相关的定值,及相关的变量是否容易研究它的变化。于是想到过点P作垂直于X轴的线段。而这条线段本身也具有一定的优势,即它上的所有点横坐标相同,借助纵坐标可解决自身长度问题。做了辅助线后,发现PD所对的角的大小是等于∠BCO的,是个定值。而斜边这个变量也容易研究,借助同一个横坐标所对应的抛物线上的点的纵坐标与一次函数的部分图像线段BC上的点的纵坐标之差即可研究。

  这道题,目标是要让△PDC与△BOC相似,那么我们应该牢牢把握三角形相似的充分条件。因为已经有一组直角相等,显然最便捷的办法是再找一组角相等,即可解决问题。但是由于,点P的运动影响着角的变化。情况不明确,所以要把可能存在的两种情况都考虑到。

5c1aea03f955212d0c48056100201d0a.png

33f4b065c089c3761347784c31a6fbdc.png

c008ed371a4361bc87d855851e3adc6d.png

【对本题的认识】本题考查二次函数综合题、一次函数的应用、勾股定理的逆定理、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会根据方程解决问题,属于中考压轴题.

第二种类型

二次函数中动点与图形面积最值、动点与等腰三角形的存在性问题

(2018·泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一个动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

063d960a4b01a7dcef7dc0a97720d106.png

【分析】 (1)利用待定系数法求出抛物线的解析式; (2) 方法一:      首先,最基本的,要求△PCE面积的最大值,先要看面积的表示。影响面积的底和高这两个量只能有一个变量,另外一个量一定得是定值。但是这道题里,我们发现△PCE的每一条边都随着点P的运动而变化着,高随之变化。因此,面积表达式中有两个变量,解决不了问题,换思路。 显然,直接从该三角形本身入手,解决不了问题。那么,我们的目光转向“它的周 围”,即用其他的量去表示要解决的目标量,这样做目的是尽可能地减少研究过程中的变量。于是,我们看到了S△PCE=S△PCB-S△PBE   S△PCB  S△PBE 都未知且都是变量,但是通过观察我们发现:这两个三角形有着同一条底PB,底虽在变化,但变化的实质是点P的横坐标的改变。再来说高,△PCB的高是定值,很容易求出。那也就是说 S△PCB只受点P的横坐标的影响;△PEB的高,容易看出受点E的纵坐标的影响,但是我们看点P、点E所在直线可用一个一次函数表达式去表示。一旦一次函数表达式出来了,可立刻求PE、BC的交点E的坐标。而在不知道PE线上任何两点坐标的情况下,如何去求PE所在直线的一次函数表达式。这里学的扎实的学生就会发现另外一个条件:PE∥AC。因此PE可以看作是由AC向右平移若干单位长度得到的。借助线段AC所在直线的一次函数表达式即可写出所需要的一次函数式。在写的时候,需要点P的坐标,点P纵坐标为0,那么需要它的横坐标。分析到这里,也就是说:S△PBE 归根结底也是受点P的横坐标影响的。 于是,可以设点P的横坐标为X,那么其余问题便迎刃而解了。      方法二:      我们当然还是要从△PCE的“周围”入手,还是S△PCE=S△PCB-S△PBE,但解决S△PCB  S△PBE有所不同。PE∥AC,因此△PBE∽△ABC。△ABC的面积为定值,面积之比=相似比的平方 ,相似比可用表示。于是,可以表示出S△PBE 。而S△PCB,底PB跟点P的横坐标有关系,高CO是个定值,发现这种方法的落脚点又在点P的横坐标这里。于是,可以设点P的横坐标为未知数X,往下便可迎刃而解。 (3) 要让△OMD为等腰三角形,那么需要紧抓等腰三角形成立的充分条件,即有两边相等。这里两个顶点点D、点O已经确定,即三角形中一边已经确定。因此,边OD有可能是腰:OD=OM或OD=DM。边OD还可能是底。总共分三种情况,需要进行分类讨论。

79701f5a064575f951c0920356992ee1.png

9cb4ce6b14a604d9f6bb9cf740d8ece1.png

【对本题的认识】本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类讨论的数学思想.第(2)问将面积的最值转化为二次函数的极值问题,注意其中求面积表达式的方法;第(3)问重在考查分类讨论的数学思想,注意三种可能的情形需要一一分析,不能遗漏。

3c9ded5c6fe901d1ba5dfe0fd2710940.gif d5e1d88993057c364fdbb61ba3898e82.gif 3b9eb6d96ead195c3207dfb60b83baae.gif 对于部分二次函数中动点与求最值的问题,要在“动中找静”,将目标量的研究专向研究其它影响它的量,并争取在这些量中找到定值,使得只存在一个变量。通过研究这唯一的一个变量去研究目标量,例如第一道题中构造直角三角形,用锐角三角函数表示线段PD时,我们确保只有斜边一个变量;有时候也可能出现这种情况,我们找到了几个影响目标量的量,但是他们都是变量,不能确保唯一变量。那么此时我们就要看这几个变量是否同时都受同一个根本的量影响,看到这一点之后就会迎刃而解了。比如第二道题中点P的横坐标一旦设了未知数,其它问题便迎刃而解。 而对于相似三角形、等腰三角形、平行四边形等特殊图形是否存在的问题,我们应当牢牢把握住这些特殊图形成立的充分条件。从充分条件入手,去看题目能否达成这个充分条件。但要注意的是,因为有动点会造成图形的变化,所以在研究题目是否能达成我们所需的充分条件时,要尽可能地考虑到所有情况,这里往往需要分类讨论。 一般,遇到动点与三角形相似的存在性时,我们要考虑到可能有不同的角的对应相等情况;会有两种情况。 在动点与等腰三角形的存在性问题上,一般都会有确定的两个点。那么我们要考虑到这确定的两点连成的边可能是腰(这里又会往下细分两小类情况),还可能是底。共三种情况。 而在动点与平行四边形的存在性问题上,通常也会给定两个点。那么我们要考虑到这给定两点所连成的边有可能是后期形成的平行四边形的一条边,也有可能是后期形成的平行四边形的一条对角线,共两种情况。

636c19096f7cf0058edbb4b554be8491.png

作者:乌鲁木齐市第74中学:付雪娇

2014年开始担任班主任工作至今。主要获得的奖项有:

2015年论文国家级一等奖并发表在《素质教育》 2016年教学设计 《不等式及其解集》获得区级一等奖 2017年   微课 《扇形的弧长与面积》获自治区级三等奖 微课 《圆锥的侧面积与全面积》获自治区级三等奖 片段课 《消元——解二元一次方程组》获市级一等奖 2018年 录像课《消元——解二元一次方程组》获市级二等奖 2019年论文《二次函数常见综合题型的归类与解题思考》获市级二等奖 2019年参与市级小课题立项 结题 获得 市级 三等奖数 ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ 745168bc4aace8d14c750ed6a6ee0c85.png

如何将家常课上成公开课、示范课?

fe5a2aaf51aff0519e23e4a142159168.png

成长路上,并肩而行——经开区初中数学名师工作室第二次教研活动

eb72c179583c5a53868d165215228378.png

含有未知数的等式就是方程吗?

b0f163d921a5e2970f331f3513fe3c93.png

在数学教学中践行学生核心素养教育

ede88aba5557dd5c48881a2cbfd4f7ba.png

第一周康奈尔笔记展

73322681007c80d395dbbcb750486072.png

图形折叠在中考中的应用

1e2744204609c3ddea681126a686f79c.png

第一次周测反思

92fa719b0980bfe4e419e71707b2e86a.png

导学案教学法简述

d6197f3a4ab915c2657c3a3c69f204fd.png

《全等三角形》数学小报数学小论文展示

4f766dc2e537782dbe35e3673169b687.png

立足课标  面向中考

31a697c3aa57ce093a54e00f7e305409.png

今天,学生是课堂的主角

f467de4c0188fa039181d4c3c0169e7b.png

浅谈在初中数学教学中运用“翻转课堂”教学模式的优越性

b227ed8c8faffc50a29019e2e1d27c1d.png

学生录制视频说题进行互评的尝试

567788b51f4fa3db68bc55b5535d0782.png

初等几何变换在中学数学中的应用

087fd83d67d657e226cd9dc7dfd22096.png

有理数为什么要叫“有理数”?

8965f6335efb5fed922cd96b8ad6d1d2.png

经开区初数名师工作室第一期活动简讯

57f749c9f475d08148a30017296b943f.png

非常精彩的学生课堂说题展示

喜欢就点个在看再走吧 3b15ff993953082eacf220731b8b0e17.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值