

点击上方 蓝字 关注我们
作者:乌鲁木齐市第74中学:付雪娇
摘要:分析了中考二次函数压轴题的后几小问。将常见题型的考察归类总结,并根据不同题型,提炼概括了一些自己的解题心得。常见的有两大类问题:第一类,二次函数与线段长度、图形面积的最值问题;第二类,二次函数中动点与某个几何图形是否存在的问题,常见的有二次函数中动点与等腰三角形的存在性问题、与直角三角形的存在性问题、与相似三角形的存在性问题、与平行四边形的存在性问题。同时结合具体的中考真题,阐释如何形成该题的正确合理解题思路。
关键词:二次函数 综合题型 归类 解题
引言
在中学代数中,有一块儿很重要的内容,它就是二次函数。它既简单又具有丰富的内涵和外延。二次函数的研究是将“数”与“形”联系在一起,而联系它们的正是坐标。坐标将抽象的数与数的关系生动形象的刻画成了具体的平面直角坐标系里的图象。反过来,通过生成的图像去研究函数的性质,这是一个数→形→数的研究过程。如此以来,实际上对于一些我们学过的图形,尤其是非常规则的图形(非常规则的图形容易通过坐标展现在平面直角坐标系里)我们也可以通过坐标展现出数,这是形→数的过程。例如将等腰三角形、直角三角形、平行四边形等通过坐标展现在平面直角坐标系里。这些规则的图形有着各自特殊的性质与判定,再加上二次函数本身的各种性质,那么当同时出现在平面直角坐标系里时就会碰撞出各种复杂的题型。而数形结合思想至始至终贯穿着整道题的解决过程。 本文将二次函数的常见综合题型归结为两大类:第一类,二次函数与线段长度、图形面积的最值问题;第二类,二次函数中动点与某个几何图形是否存在的问题,常见的有二次函数中动点与等腰三角形的存在性问题、与直角三角形的存在性问题、与相似三角形的存在性问题、与平行四边形的存在性问题。 下面,本文将以两道中考题为代表对中考中二次函数综合题型进行归类分析,同时写了一些自己的解题心得。第一种类型
二次函数中动点与线段长度最值、动点与三角形相似的存在性问题 (2018·乌鲁木齐中考)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0)。 (1)求抛物线的解析式; (2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D. ①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由; ②当△PDC与△COA相似时,求点P的坐标.【分析】
(1)直接把点A(﹣2,0),B(8,0)代入抛物线的解析式中列二元一次方程组,解出可得结论;
(2)
方法一:
首先,看到PD,因为PD⊥BC,所以第一想法是三角形的高。在这个图中,若连接PB,那么以BC为底,随着点P的运动,当△PBC面积最大时,这条底上的高就最大。可是,△PBC的面积何时最大,或者怎样以其他方式衡量它的面积最大,需要解决这个问题。于是,观察到△BOC与△PBC构成了四边形COBP,而△BOC的面积是个定值。所以只需求出四边形COBP的最大面积,即可得到△PBC的最大面积。因为四边形不规则,所以需要将它分割,分割成一个直角梯形和一个直角三角形,再求最大面积。
方法二:
想象点P运动情景,在“动中找静”。这么做的原因是因点P的运动引发的变量太多,而没有定值。我们需要通过研究影响PD的其他量间接地研究PD.而在几个与PD长度有关系的量中,必须只有一个量在变,剩余的量都是定值。当然这里的“几个”越少越好。再联系到垂直,于是想到了将PD构造成直角三角形的一条边,再去用锐角三角函数研究,即研究某个角和另外的某条边。当然要确保这两个量中的其中一个必须是定值,再去研究另一个量的变化趋势,还得容易研究才行。经过尝试,RT△PDC或者连接PB之后的RT△PDB都不可以,因为这样一来边角都是变量。因此需要添加辅助线。如何添加?得考虑到构造出的直角三角形中,是否有前面提到的相关的定值,及相关的变量是否容易研究它的变化。于是想到过点P作垂直于X轴的线段。而这条线段本身也具有一定的优势,即它上的所有点横坐标相同,借助纵坐标可解决自身长度问题。做了辅助线后,发现PD所对的角的大小是等于∠BCO的,是个定值。而斜边这个变量也容易研究,借助同一个横坐标所对应的抛物线上的点的纵坐标与一次函数的部分图像线段BC上的点的纵坐标之差即可研究。
这道题,目标是要让△PDC与△BOC相似,那么我们应该牢牢把握三角形相似的充分条件。因为已经有一组直角相等,显然最便捷的办法是再找一组角相等,即可解决问题。但是由于,点P的运动影响着角的变化。情况不明确,所以要把可能存在的两种情况都考虑到。
【对本题的认识】本题考查二次函数综合题、一次函数的应用、勾股定理的逆定理、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会根据方程解决问题,属于中考压轴题.
第二种类型
二次函数中动点与图形面积最值、动点与等腰三角形的存在性问题
(2018·泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一个动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.【对本题的认识】本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类讨论的数学思想.第(2)问将面积的最值转化为二次函数的极值问题,注意其中求面积表达式的方法;第(3)问重在考查分类讨论的数学思想,注意三种可能的情形需要一一分析,不能遗漏。



作者:乌鲁木齐市第74中学:付雪娇
2014年开始担任班主任工作至今。主要获得的奖项有:
2015年论文国家级一等奖并发表在《素质教育》 2016年教学设计 《不等式及其解集》获得区级一等奖 2017年 微课 《扇形的弧长与面积》获自治区级三等奖 微课 《圆锥的侧面积与全面积》获自治区级三等奖 片段课 《消元——解二元一次方程组》获市级一等奖 2018年 录像课《消元——解二元一次方程组》获市级二等奖 2019年论文《二次函数常见综合题型的归类与解题思考》获市级二等奖 2019年参与市级小课题立项 结题 获得 市级 三等奖数 
如何将家常课上成公开课、示范课?

成长路上,并肩而行——经开区初中数学名师工作室第二次教研活动

含有未知数的等式就是方程吗?

在数学教学中践行学生核心素养教育

第一周康奈尔笔记展

图形折叠在中考中的应用

第一次周测反思

导学案教学法简述

《全等三角形》数学小报数学小论文展示

立足课标 面向中考

今天,学生是课堂的主角

浅谈在初中数学教学中运用“翻转课堂”教学模式的优越性

学生录制视频说题进行互评的尝试

初等几何变换在中学数学中的应用

有理数为什么要叫“有理数”?

经开区初数名师工作室第一期活动简讯

非常精彩的学生课堂说题展示
喜欢就点个在看再走吧