ef多条件映射_原创理论:关于TI TE NE NI SI SE的数学映射

本文探讨了INTP思维模式下,如何使用数学映射来理解八维理论中的非F功能。通过将SI映射为点,NE映射为流形,TI构建测地线进行推理,SE作为散点,NI表示概率场,作者阐述了这些功能在推理过程中的动态交互,并分析了TI和TE在建立阈值后的推理差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

受到各方大佬的启发,以及由于本人对数学概念的熟悉,我对八维中的非F功能(intp对F不熟悉)进行了数学的映射。

从INTP的思维说起:SI的质料首先进入,其次NE的知觉和直观对SI进行整合,使具有普遍性,最后TI对NE-SI给予判断,提供了确定性,对事物的功能和作用进行了精确定位。

因此,把单个SI映射为空间中一点(几个点无法进行整合,因为SI是I功能),把NE映射为流形(微分几何中的概念),INTP的NE在SI点上建立流形(SI完全在NE上,因此NE-SI正如

@Suminos

所说是完全归纳法,且不同NE可以进行整合),最后TI在NE上建立测地线(流形上最短距离的几何元素)。建立以后,TI可以使主体在NE上移动(推理)。事实上TI建立的是事物之间的联系(包括逻辑关系),类似于y=2x的函数关系(事物(变量)之间的关系)。已知点与点形成向量,其之间是测地线。TI的基底测地线可以是公理,常用的测地线向量可以是定理。这样TI可以用基底和常用向量达到一个未知的点(比如用公理和定理证明未知命题),TI还可以通过一题多解(沿多个路径达到未知点)来实现对未知SI点的定位。TI相当于事物之间联系的缩减(把无数的事物联系缩减为已知基底和常用向量)。

TI的原因未建立阈值,所以TI的向量起点可以自由移动,所以TI善于类推。

(划重点)TI的过程初期未建立阈值,所以初期TI难以控制距离,距离在阈值以外,所以TI经常推理跳步(另一个解释是距离大);也难以控制方向,方向把握不精确,所以TI初期难以分清不同的事物联系的微妙区别,例子见INTP格罗滕迪克上学时觉得课堂上讲的数学重复乏味(其实我也有这个倾向)。

由于TI初期方向和距离都难以控制,所以TI仅用一条推理线是做不到定位一个点的,所以TI要用NE或SE来沿不同路径(方向难以集中)来对一个点定位,好比一个点在坐标系内要用n个数来定位(想象从n个坐标点(比如(0,0,1))延长不同直线相交(TI难以控制距离和方向的体现)于这个点)。

后期TI经过SE或NE的思考后,过程已建立阈值(体系有了严格定义,定理),所以方向和距离都建立阈值,但TI也可以用个人体系的测地线,但是在外部看来表现为跳步。于是TI容易根据体系内定义定理公理来辨别不同逻辑的微妙区别。后期TI会沿着自己的测地线的最精确步骤去做事,具体表现为TI抄近道。

把SE映射为空间中的散点,不同SE散点之间可以整合(因为SE是E功能)。把NI映射为建立在SE附近的概率场(空间中不同位置(散点)上存在不同的概率,且这个概率为下一刻时间某事件发生的概率。从这里看出,NI和时间有关,NE和空间有关),因为NI是场,所以NI有梯度场线和等概率线。SE散点不必在NI梯度场线上,所以NI-SE正如

@Suminos

所说,是不完全归纳法。TE在NI上的不同两点建立向量并直线位移(直线推理),并且不断进行位移,产生多个目标。TE类似于程序的执行步骤,TI则类似于程序内部本身。TE事实上是事物之间联系的堆积,因为TE处于不断推理(位移)状态中,依据外部事实不断推理。TE也可以依靠TI建立的测地线进行位移,因为TI和TE本身同质,但趋向不同(TE追求阈值外,导致其不断堆积,TI追求阈值内,不断缩减)。TI把无数事物联系缩减为有限的基底和向量,TE则是意图不断堆积事物联系。

(划重点)TE的过程已建立阈值,所以TE的方向精确,距离也小,于是TE不会跳步,因此步骤多,容易忘记中间过程。所以TE会注意到条件与结果之间的关系 如:条件前后不一致使推理失误。条件与结果之间还缺少条件(距离已建立阈值)。我从另一个角度解释TE的距离已建立阈值,TI的距离未建立阈值。TI关心的是过程,所以它的距离要大一些,足以囊括它要探求原因的事物的范围。在逐步建立过程和原因后,TI会预测范围之外的事物的性质。TE则是关心结果,所以距离要足够小,要足够基本,来堆积这种联系以达到目标。

再说一下TE-NI。TE会沿着NI的概率梯度线(类似于电场线)进行位移(推理),因为沿着概率梯度线概率的变化率最大。所以TE沿着概率梯度线由低概率到高概率以最快的概率增长率位移。

以及TE-SI。TE将具体推理步骤成立条件储存,再加上SI的极端具体事物,所以TE-SI是一种非常具体的、普通的、常规的推理,比如高中物理化学的推理计算题。衡某中学的学生多是此种类型(。。。)。TE-SI接受外界输入的推理方法、模型然后快速推理,TE-NI则是自创模型、方法进行推理(可以参考Ramanujan和Newton),两者的共同点是产生一个个动态的结果,建立了一个可堆积资源。

TI-SE与TI-NE相似,只不过TI-SE的TI在客观世界中的事物中移动,所以TI-SE通过排列客世界的具体事物进行推理和解构。TI-SE与TE-SI的不同在于TI可以类推,TE则不可以,导致TI-SE更加灵活。ESTP可能会有能够利用实际信息推导出结果需要的必须的操作步骤的能力。(这一点在海贼王角色香吉士的身上表现在出司法岛。在TNG第七季中worf的人类兄弟的表现)而ISTP更善于持续的拆分步骤和获得更精确有效的方法。TI-SE由于擅长几何图形的解构和整合,这使他们擅长几何证明与推理;TI-NE则是擅长抽象推理(比如拓扑、抽象代数....)TI-SE和TI-NE的共同点是它们在静态结果中建立了丰富的方法、理论。

关于TI-NI。这种类型的人的学习风格特点是学习时无法扩大视角(也就是不会扩展),是因为NI的内敛视角和TI的内部判断。我观察过一个INFJ女同学证实了这点,她中考全市前10(课内知识及其牢固),可是没有通过小卷考试(课外知识接近没有)。但是她的INTJ朋友却通过了小卷考试,因为TE会考虑实际用途主动扩大范围。另外NTP会出于NE的感知(求知欲)主动学习(自我领悟)新知识。

最后感谢鬼白(数学国集选手)对我文章中的类比的逻辑漏洞的修正。我的理论水平确实有待提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值