matlab求不等式的方法,求解变分不等式的matlab程序我需要

7cd4706f7ad7a91938cd1aa08ffabe9e.png

2008-02-21

不等式的解法关于一元三次不等式的解法,

全日制普通高级中学教科书(试验修订本、必修)第一章第四节是“含绝对值的不等式解法”,第五节是“一元二次不等式的解法”。

教材在由一个商店出售食盐的实际问题引出含绝对值的不等式∣x-500∣≤5之后提出问题(以下内容引自教材):

“怎样解含绝对值的不等式呢?

让我们先看含绝对值的方程∣x∣=2,

由绝对值意义可知,方程的解是x=2或x=-2,在数轴上表示如下(图)。

再看相应的不等式∣x∣<2与∣x∣>2。

由绝对值意义,给合数轴表示(图)可知,不等式∣x∣<2就表示数轴上到原点的距离小于2的点的集合,在数轴上表示如下(图)。

因而不等...全部

全日制普通高级中学教科书(试验修订本、必修)第一章第四节是“含绝对值的不等式解法”,第五节是“一元二次不等式的解法”。

教材在由一个商店出售食盐的实际问题引出含绝对值的不等式∣x-500∣≤5之后提出问题(以下内容引自教材):

“怎样解含绝对值的不等式呢?

让我们先看含绝对值的方程∣x∣=2,

由绝对值意义可知,方程的解是x=2或x=-2,在数轴上表示如下(图)。

再看相应的不等式∣x∣<2与∣x∣>2。

由绝对值意义,给合数轴表示(图)可知,不等式∣x∣<2就表示数轴上到原点的距离小于2的点的集合,在数轴上表示如下(图)。

因而不等式∣x∣<2的解集是:{x∣-2<x<2}。

类似地,不等式∣x∣>2就表示数轴上到原点的距离大于2的点的集合,在数轴上表示如下(图)。

因而不等式∣x∣>2的解集是:

{x∣x<-2}∪{x∣x>2}={x∣x<-2,或x>2}

一般地,不等式∣x∣<a(a>0)的解集是:{x∣-a<x<a};

不等式:∣x∣>a(a>0)的解集是:{x∣x>a,或x<-a}”

以上处理充分地体现了绝对值的几何意义以及形数结合的思想,由特殊到一般的抽象概括的思想,一言以蔽之,“数轴标根法”。

以下的两个例题:解不等式∣x-500∣≤5和解不等式∣2x+5∣>7,运用整体思想(即视ax+b=x)化归为∣x∣<a,或∣x∣>a,( a>0)再运用不等式性质求出解集。

二、比较

无独有偶,1。

5一元二次不等式的解法中,先由一元一次方程、一元一次不等式与一次函数的关系,由对应值表与一次函数图象求得一元一次不等式的解集:

“一般地,设直线y=ax+b与x轴的交点是(x0,0),就有如下结果:

1.一元一次方程ax+b=0的解是x0。

2.(1)当a>0时,

一元一次不等式ax+b>0的解集是:{x∣

通过引入步长线性搜索,SQP算法在一定的假设条件下可以具有全局和局部超线性收敛性。然而在传统的SQP算法中,其二次规划子问题可能不相容,也就是子问题可行集是空集。 为了解决这个不足,备种技术相继被提出。特别是Panier和Tits在[9]中提出的一种可行SQP(FSQP,www.Yifanglunwen.com)算法,其保证山东科技大学硕士学位论文每次迭代都得到可行点,从而避免了上述问题。然而FSQP算法仍然要每次迭代求解一个二次规划子问题,使得算法的复杂度和计算量仍然较大。在这种情况下便产生了对QP一free算法的研究,因为它的子问题只包含更易求解且计算量相对较小的线性系统。 1988年,panier,Tits和Herskovits在[10]中提出一种求解不等式约束优化lb]题的QP一free算法。该算法每次迭代只要求解两个不同的线性方程组和一个线性平方问题。从那时起,QP一free算法成为非线性约束优化领域的研究热点之一。 QP一free算法具有SQP算法的一些优点,例如收敛速度快,算法结构简单等。此外它还有其它一些良好性质,例如其子问题通常只包含同系数的线性方程组,并且这些方程组在一定的假设条件下都是可解的。 然而,从理论和实用的角度来看,现有的QP一free算法仍存在两个主要问题有待解决。首先,为了确保局部快速收敛性并防止Maratos效应,严格互补松弛条件要被假设成立。然而在一般情况下,该条件很难被检验。 其次,求解等式和不等式约束优化问题的QP一free算法一般要所有等式和有效不等式约束的梯度向量线性无关。但每当等式约束个数多于两个或者总约束个数超过空间维数时,该线性无关条件经常失效。在这种情况下,病态wachier一Biegler现象(参见[4』)就会在算法中发生。Tits等最近在〔2]中提出了一种双重内点算法,在保证收敛性质不受影响的前提下,该算法大大减弱了以上线性无关条件。 通过一段时间的发展,存在于早期QP一free算法中的一些缺点己经正在被解决。例如,起初的一些QP一free算法只能证明迭代点列的任一聚点是原问题的稳定点,在一些附加假设条件下,如所有稳定点是孤立的,才能证明这些聚点是原问题KKT点。 这个问题在Z.Gao,G.He和F.Wu的关于序列线性方程组算法的文章中得到解决。另外,一些QP一free算法的子问题线性系统在严格互补松弛条件不成立时可能出现病态。这将导致乘子逼近序列出现分歧以致收敛性失败。通过应用Fiseher一Burmeister非线性互补问题函数,H.Qi和L.Qi在【17]中对以前的QP一free算法做了有效的改进,使得迭代矩阵的一致非奇异性得到保证。在大多数QP一free算法中,其子问题的维数通常是满的。因此,当应用于大规模约束问题时,计算量会相应大大增加。Y.Yang和L.Qi在Faeehinei一FISeher一Kanzow KKT识别技术的基础上,http://www.yifanglunwen.com/post/46.html对不等式约束优化问题提出一种QP一free算法。 在其每次迭论文摘要代中,只有有效工作集中的约束参与计算。 在本文中,我们在Facchinei一Fischer一Kanzow KKT点有效约束集识别技术的基础上提出了三个具有强收敛性的QP一free算法。第一个是求解不等式约束优化问题(NLPI)的可行点算法。在该算法中我们引入如下有效约束集识别函数:。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值