TREND函数是一个线性趋势的预测函数,在已知Y值、X值的条件下,预测X对应的Y值:

TREND共有4个参数,三个必选参数,一个可选参数:
- 已知Y(必选)
- 已知X(必选)
- 新X(必选)
- 截距修正:TRUE:正常计算/FALSE:截距修正为1(可选)
同样的一组数据第四参数不同,结果也是有区别的:

灰色曲线是由第四参数为FALSE时得到的结果生成的曲线。

通过斜率与截距函数我们计算出这两条曲线的斜率与截距,可以看出,第四参数用FALSE就是将截距调整为1,然后做的计算。而第四参数用的TRUE或者省略,得到正常计算的截距是8。
第一与第二参数,要求每个参数至少提供两个已知值,第三参数是单个值。

TREND函数可以用在已知历史数据,预测未来数据,当然数据符合线性规律,这个功能我们也可以用在编写绩效核算的公式中,我们举一个简单的例子:
例如:对于客户投诉的考核规定,在投诉数量小于或等于10次是为100分,每增加5次扣1分,直至扣完为止。
这是很常见的考核描述,如果给我们每个人的投诉数量,计算他们的得分,用TREND函数应该怎么来编写公式呢?
首先要找到已知值,然后来计算未知值:
- 已知Y1:100
- 已知X1:10
其实根据每增加5次扣1分,我们还可以得出最接近的一组已知条件:
- 已知Y2:99
- 已知X2:15
这样我们TREND函数的参数就凑齐了,还有一个第三参数,就是每个人的投诉量。

至于MIN、MAX函数的用法,就是为了设置最大与最小值。
如果需要了解MIN、MAX函数的用法,可以观看专栏视频: