linux平台运行 mr程序,Linux下打包运行MR程序

在配置好基本环境之后,linux下打包运行MR程序分为这么几步:

1.编写MR程序;

2.编译xx.java源文件【javac  wordcount.java】

3.打包jar 【jar  -cvf  WordCount.jar  ./WordCount*】

4.运行jar 【 hadoop  jar  WordCount.jar  org.apache.hadoop.examples.WordCount  /input  /output】注意WordCount前面要将包名写完整

网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的,大多又是 0.20 等旧版本版本的做法,即 javac -classpath /usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jar WordCount.java,但较新的 2.X 版本中,已经没有 hadoop-core*.jar 这个文件,因此编辑和打包自己的 MapReduce 程序与旧版本有所不同。

本文以 Hadoop 2.6.0 环境下的 WordCount 实例来介绍 2.x 版本中如何编辑自己的 MapReduce 程序。

Hadoop 2.x 版本中的依赖 jar

Hadoop 2.x 版本中 jar 不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如使用 Hadoop 2.6.0 运行 WordCount 实例至少需要如下三个 jar:

$HADOOP_HOME/share/hadoop/common/hadoop-common-2.6.0.jar

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar

$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar

实际上,通过命令 hadoop classpath 我们可以得到运行 Hadoop 程序所需的全部 classpath 信息。

编译、打包 Hadoop MapReduce 程序

我们将 Hadoop 的 classhpath 信息添加到 CLASSPATH 变量中,在 ~/.bashrc 中增加如下几行:

export HADOOP_HOME=/usr/local/hadoop

export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH

别忘了执行 source ~/.bashrc 使变量生效,接着就可以通过 javac 命令编译 WordCount.java 了(使用的是 Hadoop 源码中的 WordCount.java,源码在文本最后面):

javac WordCount.java

Shell 命令

编译时会有警告,可以忽略。编译后可以看到生成了几个 .class 文件。

0818b9ca8b590ca3270a3433284dd417.png使用Javac编译自己的MapReduce程序

接着把 .class 文件打包成 jar,才能在 Hadoop 中运行:

jar -cvf WordCount.jar ./WordCount*.class

Shell 命令

打包完成后,运行试试,创建几个输入文件:

mkdirinput

echo"echo of the rainbow"> ./input/file0

echo"the waiting game"> ./input/file1

Shell 命令

0818b9ca8b590ca3270a3433284dd417.png创建WordCount的输入

开始运行:

/usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output

Shell 命令

不过这边可能会遇到如下的提示 Exception in thread "main" java.lang.NoClassDefFoundError: WordCount :

0818b9ca8b590ca3270a3433284dd417.png提示找不到 WordCount 类

因为程序中声明了 package ,所以在命令中也要 org.apache.hadoop.examples 写完整:

/usr/local/hadoop/bin/hadoop jar WordCount.jar org.apache.hadoop.examples.WordCount input output

Shell 命令

正确运行后的结果如下:

0818b9ca8b590ca3270a3433284dd417.pngWordCount 运行结果

进阶:使用 Eclipse 编译运行 MapReduce 程序

使用命令行编译运行MapReduce程序毕竟有些麻烦,修改一次就得手动编译、打包一次,使用Eclipse编译运行MapReduce程序会更加方便。

WordCount.java 源码

文件位于 hadoop-2.6.0-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples 中:

/**

* Licensed to the Apache Software Foundation (ASF) under one

* or more contributor license agreements. See the NOTICE file

* distributed with this work for additional information

* regarding copyright ownership. The ASF licenses this file

* to you under the Apache License, Version 2.0 (the

* "License"); you may not use this file except in compliance

* with the License. You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

packageorg.apache.hadoop.examples;

importjava.io.IOException;

importjava.util.StringTokenizer;

importorg.apache.hadoop.conf.Configuration;

importorg.apache.hadoop.fs.Path;

importorg.apache.hadoop.io.IntWritable;

importorg.apache.hadoop.io.Text;

importorg.apache.hadoop.mapreduce.Job;

importorg.apache.hadoop.mapreduce.Mapper;

importorg.apache.hadoop.mapreduce.Reducer;

importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;

importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

importorg.apache.hadoop.util.GenericOptionsParser;

publicclassWordCount{

publicstaticclassTokenizerMapper

extendsMapper{

privatefinalstaticIntWritableone=newIntWritable(1);

privateTextword=newText();

publicvoidmap(Objectkey,Textvalue,Contextcontext

)throwsIOException,InterruptedException{

StringTokenizeritr=newStringTokenizer(value.toString());

while(itr.hasMoreTokens()){

word.set(itr.nextToken());

context.write(word,one);

}

}

}

publicstaticclassIntSumReducer

extendsReducer{

privateIntWritableresult=newIntWritable();

publicvoidreduce(Textkey,Iterablevalues,

Contextcontext

)throwsIOException,InterruptedException{

intsum=0;

for(IntWritableval:values){

sum+=val.get();

}

result.set(sum);

context.write(key,result);

}

}

publicstaticvoidmain(String[]args)throwsException{

Configurationconf=newConfiguration();

String[]otherArgs=newGenericOptionsParser(conf,args).getRemainingArgs();

if(otherArgs.length!=2){

System.err.println("Usage: wordcount ");

System.exit(2);

}

Jobjob=newJob(conf,"word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job,newPath(otherArgs[0]));

FileOutputFormat.setOutputPath(job,newPath(otherArgs[1]));

System.exit(job.waitForCompletion(true)?0:1);

}

}

Java

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值