java欧拉函数_欧拉函数(Euler' totient function )

欧拉函数(Euler' totient function )

Author: Jasper Yang

School: Bupt

前言

gamma函数的求导会出现所谓的欧拉函数(phi),在一篇论文中我需要对好几个欧拉函数求值,结果不能理解,立即去google,发现了一个开源的python库可以用来计算欧拉函数

class eulerlib.numtheory.Divisors(maxnum=1000)

Implements methods related to prime factors and divisors.

Parameters: maxnum – Upper limit for the list of primes. (default = 1000)

divisors(num)

Returns a list of ALL divisors of num (including 1 and num).

Parameters: num – An integer for which divisors are needed.

Returns: A list [d1,d2,...dn] of divisors of num

phi(num)

Returns the number of totatives of num

Parameters: num – Integer for which number of totatives are needed.

Returns: Number of totatives of num

Note A totative of an integer num is any integer i such that, 0 < i < n and GCD(i,num) == 1.

Uses Euler’s totient function.

这个函数到这里并不能看懂用法和意义,下面我通过介绍两个概念来让大家慢慢理解这个过程。

Totative(不知道怎么翻译)

from wiki

在数论中,一个给定的n的totative是一个符合大于0并且小于等于n的k,并且这个k和n是互质数(什么是互质数呢)。

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

欧拉方程 $$ \phi(x) $$ 就是在计算n的totative个数。

在n的乘法模下的totatives形成了模n乘法群( Multiplicative group of integers modulo n )。 --->后面这句涉及的群的知识我去维基上了解下后没看懂,放弃了,未来有机会看看中文资料理解一下再添加进来吧。 wiki传送门

Euler's totient function

这个就是主角欧拉函数。

from wiki

在数论中,对正整数n,欧拉函数 $$ \varphi (n) $$ 是小于或等于n的正整数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为φ函数(由高斯所命名)或是欧拉总计函数[1](totient function,由西尔维斯特所命名)。

例如 $$ \varphi (8)=4 $$,因为1,3,5,7均和8互质。

欧拉函数实际上是模n的同余类所构成的乘法群(即环 $$ {\mathbb {Z}}/n{\mathbb {Z}} $$ 的所有单位元组成的乘法群)的阶。这个性质与拉格朗日定理一起构成了欧拉定理的证明。

若n是质数p的k次幂, $$ \varphi (n)=\varphi (p^{k})=p^{k}-p^{{k-1}}=(p-1)p^{{k-1}} $$ ,因为除了p的倍数外,其他数都跟n互质。

若 $$ n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}} $$

则 $$ \varphi (n)=\prod _{{i=1}}^{r}p_{i}^{{k_{i}-1}}(p_{i}-1)=\prod _{{p\mid n}}p^{{\alpha _{p}-1}}(p-1)=n\prod _{{p|n}}\left(1-{\frac {1}{p}}\right) $$

其中 $$ \alpha _{p} $$ 是使得 $$ p^{{\alpha }} $$ 整除n的最大整数 $ alpha $(这里 $$ \alpha _{p_{i}}=k_{i} $$ )。

例如 $$ \varphi (72)=\varphi (2^{3}\times 3^{2})=2^{{3-1}}(2-1)\times 3^{{2-1}}(3-1)=2^{2}\times 1\times 3\times 2=24 $$

我的理解

为什么会有两个法则,一个是基本的计算而另一个是连乘,其实就是因为认为所有的数都可以拆解成两个素数的k次幂的形式。

我需要的知识以上就足够了,如果需要更多的理解,看下面的链接

Eulerlib

这是个开源的python语言的实现库

我们主要使用里面的

eulerlib.numtheory.Divisors(maxnum=1000)下的

phi函数

使用过程,

e = eulerlib.numtheory.Divisors(10000) # 这里的10000是最大值,默认是1000

e.phi(100) # 求phi(100)

使用十分简单。

这个函数的实现源码如下: 源码传送门

def phi(self,num):

"""Returns the number of `totatives

`_ of *num*

:param num: Integer for which number of totatives are needed.

:returns: Number of totatives of *num*

.. note::

A totative of an integer *num* is any integer *i* such that,

0 < i < n and *GCD(i,num) == 1*.

Uses `Euler's totient function

`_.

"""

if(num < 1):

return 0

if(num == 1):

return 1

if(num in self.primes_table): # 这个素数的table一开始就有了,从别的包导来的,去看定义就是maxnum以内的所有素数

return num-1

pfs = self.prime_factors_only(num) # 这个步骤就是找出p了

prod = num

for pfi in pfs:

prod = prod*(pfi-1)/pfi

return prod

def prime_factors_only(self,num):

"""Returns the `prime factors

`_ *pf* :sub:`i` of *num*.

:param num: An integer for which prime factors are needed

:returns: A list [pf1,pf2,...pfi] of prime factors of *num*

"""

if num in self.pfactonly_table:

return self.pfactonly_table[num]

elif ((num < 2) or (num > self.limit)):

return []

elif num in self.primes_table:

self.pfactonly_table[num] = [num]

return [num]

else:

result = []

tnum = num

for prime in self.primes_table:

if(tnum%prime==0):

result.append(prime)

pdiv = prime*prime

while(tnum%pdiv == 0):

pdiv *= prime

pdiv //= prime # 这个//= 和 /=似乎没有区别

tnum //= pdiv

if(tnum in self.primes_table):

result.append(tnum)

break

elif(tnum == 1):

break

self.pfactonly_table[num] = result

return result

源码看起来也十分的简洁易懂,就是为了找出p1和p2然后就可以分别求phi值再相乘了。

paper done : 2017/4/19

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值