c语言圆弧插补源代码,模拟PLC 的圆弧插补方式在VC中绘制圆弧

最近同事想让要做一个绘图的控件。VC里面的画弧函数Arc需要提供外接矩形的坐标。同事觉得不好用,他更习惯圆弧插补的那种方式。于是看了看圆弧插补的东西。其实这种画弧方式就是提供圆弧的起点、终点和半径来画弧。

首先来简单介绍下圆弧插补:

有两种圆弧插补:

G02     顺时针圆弧插补

G03    逆时针圆弧插补

圆弧插补编程(半径编程):

圆弧用编程功能G02 或G03 和其后圆弧终点坐标和半径值定义。

ff4e074af7e8c94665db7e3d28d9799e.png

圆弧半径用字母“R”表示。如果圆弧小于180 度,半径用正数符号,如果大于180 度用负数符号。这样基于所选圆弧插补(G02 或G03),可定义所选圆弧。

55fa32d4ce7cf021c644ba7736968e58.png

结合圆弧插补,设计绘制圆弧的函数:函数可分为两种,顺时针绘制和逆时针绘制(分布对应G02 和G03)。函数的参数为圆弧起点,终点,半径。其中的半径若为正数,则绘制的圆弧为弧度小于180 的弧,这里称为小圆弧。若半径为负数,则绘制的弧为大雨180度的弧,这里成之为大圆弧。

圆弧的绘制最终还是要使用C++ 提供的画弧函数Arc 。 因此我们需要找出来圆所在的外接矩形(这里是正方形)。因为我们已知半径,所以找到圆心就可以推导出圆所在的矩形。

圆心的推导过程参考文章已知圆上两点坐标和半径,求圆心   已知两点坐标和半径,求圆心 。圆心解出来有两个(x01,y01)(x02,y02)。如图所示,过相同的点并且半径相同的圆也确实有两个。那么到底哪一个是符合条件的圆呢。

0724b1da6efce6b1c9047c2d05fc9e1f.png

首先来讨论逆时针画弧的函数。如上图,从起点A到终点B,小圆弧就指的红色部分的弧,大圆弧是指的蓝色部分的弧。小圆弧的圆心是O2,大圆弧的圆心是O1;

那么由什么条件能判断出所得的两个圆心(x01,y01)(x02,y02)哪一个是逆时针里的大圆弧的圆心O1,哪一个是逆时针里的小圆弧圆心O2呢? 这里我采用的是向量叉乘的方式判断的。

b1df6266972feeed5a6d8e72184299e1.png

也就是起点到终点组成的向量,与起点与大弧圆心组成的向量叉乘结果是小于0 的。(这个从图上使用右手法则可以判断出来,由AB 向AO1 弯曲,拇指垂直屏幕向里)。

所以在上一步所得的两个圆心坐标,与起点坐标组成向量。

设A(x1,y1) B(x2,y2)

向量AB={x2-x1,y2-y1}

向量a={x01-x1,y01-y1}

向量b={x02-x1,y02-y1}

19a4efe746419ba7a1286f748ccd46bd.png

则(x01,y01)为大圆弧圆心 (x02,y02)为小圆弧圆心

否则 反之。

代码如下:

//已知圆弧上两点 和半径,求圆心

void CircleCenter(double x1,double y1,double x2,double y2,double R,double &x01,double &y01,double &x02,double &y02)

{

//x1 == x2

if (abs(x1-x2)<0.0000001)

{

//(x1,y1)(x2,y2)之间的距离 /2

double dis = abs(y1-y2)/2;

double dx = sqrt(R*R-dis*dis);

double dy = (y1+y2)/2;

x01 = x1-dx;

y01 = dy;

x02 = x1+dx;

y02 = dy;

return ;

}

double c1 = (x2*x2 - x1*x1 + y2*y2 - y1*y1) / (2 *(x2 - x1));

double c2 = (y2 - y1) / (x2 - x1); //斜率

double A = (c2*c2 + 1);

double B = (2 * x1*c2 - 2 * c1*c2 - 2 * y1);

double C = x1*x1 - 2 * x1*c1 + c1*c1 + y1*y1 - R*R;

y01 = (-B + sqrt(B*B - 4 * A*C)) / (2 * A);

x01 = c1 - c2 * y01;

y02 = (-B - sqrt(B*B - 4 * A*C)) / (2 * A);

x02 = c1 - c2*y02;

}

//逆时针画弧

void CDrawShapeCtrl::Arc_AntiClock(DOUBLE StartX, DOUBLE StartY, DOUBLE EndX, DOUBLE EndY, DOUBLE R)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

// TODO: Add your dispatch handler code here

//圆心坐标

double x01,y01,x02,y02;

double x_big,y_big;//大弧圆心

double x_small,y_small;//小弧圆心

LONG nLeftRect, nTopRect,nRightRect,nBottomRect;

CircleCenter(StartX,StartY,EndX,EndY,R,x01,y01,x02,y02);

//向量

double ax = EndX- StartX;

double ay = EndY - StartY;

double bx = x01 - StartX;

double by = y01 - StartY;

//利用向量的叉乘判断圆心位置

//叉乘<0 则为大弧圆心;否则为小弧圆心

double mulRt = ax*by-bx*ay;

if (mulRt<0)

{

x_big = x01;

y_big = y01;

x_small = x02;

y_small = y02;

}

else

{

x_big = x02;

y_big = y02;

x_small = x01;

y_small = y01;

}

CClientDC dc(this);

CRect rc;

GetClientRect(rc);

dc.SetMapMode(MM_ISOTROPIC);//MM_ISOTROPIC

//逻辑坐标原点

dc.SetViewportOrg(rc.right/2,rc.bottom/2);

//设置映射比例为1,逻辑坐标Y轴方向与设备坐标相反

dc.SetWindowExt(100,100);

dc.SetViewportExt(100,-100);

//R>0 弧<180度; R<0 弧>180度

if (R<0) //大弧

{

nLeftRect = x_big-R;

nTopRect = y_big + R;

nRightRect = x_big+R;

nBottomRect = y_big -R;

dc.Arc(nLeftRect,nTopRect,nRightRect,nBottomRect,StartX,StartY,EndX,EndY);

}

else //小弧

{

nLeftRect = x_small-R;

nTopRect = y_small+R;

nRightRect = x_small+R;

nBottomRect = y_small - R;

dc.Arc(nLeftRect,nTopRect,nRightRect,nBottomRect,StartX,StartY,EndX,EndY);

}

}

顺时针函数,只要将起点终点坐标对换,直接调用逆时针函数即可。

arc 函数参考:

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值