python ln()怎么实现_Python math库 ln(x)运算的实现及原理

这个是很有用的一个运算,除了本身可以求自然对数,还是求指数函数需要用到的基础函数。

实现原理就是泰勒展开,最简单是在x=1处进行泰勒展开:

6dbdae445ebccef3ea70a41b9bfb5702.png

但该函数离1越远越难收敛,同时大于2时无法收敛,所以需要进行换元,然后重新展开:

517d7999c2d45402793f100514e8c14a.png

dd1de997f55d5b5b7878f4f4255d0d03.png

但是该换元在接近0时或者接近无穷大时收敛困难,处在1到10范围内收敛快且精度高,所以对大于10或小于1的值进行分解如下:

ln(55000)=ln(5.5)+4ln10

ln(0.0015)=ln(1.5)-4ln10

ln10为算好的值,可直接由ln_h1(10)得到

Epsilon 为精度控制

输出的i可以检测收敛次数。

Epsilon = 10e-16

ln10 = 2.30258509299404568401

def ln_h(x):

'''

ln函数泰勒换元展开

:param x: 0

:return:ln(x)

'''

def ln_h1(x):

s2 = 0.0

delta = x = (x - 1.0) / (x + 1.0)

i = 0

while fab_h(delta * 2) / (i * 2 + 1) > Epsilon:

s2 += delta / (i * 2 + 1)

delta *= x * x

i += 1

print(i)

return 2 * s2

coef = 0

if x > 10:

while x / 10 > 1:

coef += 1

x /= 10

return ln_h1(x) + coef*ln10

elif x < 1:

while x * 10 < 10:

coef += 1

x *= 10

return ln_h1(x) - coef*ln10

else:

return ln_h1(x)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2019-07-16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值