一、计算题
1. 用Gomory 切割法解以下问题。
【答案】(1)在该线性规划问题的约束条件中分别加入松弛变量x3,x4,化为标准型
先不考虑上述模型中的整数约束,利用单纯形法进行求解,如表所示。
表
此时的最优解为最优目标值。
由表中最终单纯形表可得变量间的关系式:
将系数和常数项都分解成整数和非负数真分数之和,移项,则以上两式变为
要求x 1,x 2,x 3,x 4为非负整数,从上述两式看来,等式左边是整数,等式右边括号内是正数,所以等式右边必须是负数,则上述第二个等式的右端可由下式代替:
即
加入松弛变量x 5,即得到切割方程:
表
将该约束条件加入到上表的最终单纯形表中,并进行进一步求解,如下表所示。
由于x l ,x 2己为整数,所以最优解为
(2)在该线性规划问题的约束条件中分别加入松弛变量x 3,x 4,x 6及人工变量x 5,化为标准型
先不考虑模型中的整数约束,利用单纯形法进行求解,如表所示。
表
此时的最优解为
由表中最终单纯形表可得变量间的关系式:
,最优目标值Z*=30/7。
将系数和常数项都分解成整数和非负真分数之和,并移项,则以上三式变为:
因为要求所有变量为非负整数,从上述第一个等式看来,等式左边是整数,等式右边括号内是正数,所以等式右边必是负数,则上述第一个等式的右端可由下式代替:
加入松弛变量x 7,即得到切割方程:将该约束条件加入到表