elasticsearch java api 更新,elasticsearch 5.4 JAVA API 使用

JAVA API

根据官网API进行的整合,提供了增删改查、分组的demo

前置条件 :

JDK1.8

elasticsearch 5.4

maven 项目

1.新建maven项目,添加依赖

#添加more-core依赖,或者自行添加sping依赖代替(私服依赖)

com.umpay

mars-core

2.0.0-SNAPSHOT

#client依赖(必须的)

org.elasticsearch.client

transport

5.4.1

#使用了LifeCycle的生命周期类(非必须),可使用Spring的生命周期或者其他来实现(私服依赖)

com.umpay

typhos-kernel

关于日志

若使用log4j 2来记录日志,增加如下依赖

org.apache.logging.log4j

log4j-api

2.8.2

org.apache.logging.log4j

log4j-core

2.8.2

若使用其他日志,如logback,需添加slf4j桥转接

org.apache.logging.log4j

log4j-to-slf4j

2.8.2

2.客户端实现

ElasticsearchClient.java

①设置变量,set方法自己生成

private String clusterName = "elasticsearch";//设置集群名称

private String clusterNodes;//节点的ip:port

private boolean sniff = true;// 是否自动检测变化节点

private String pingTimeout = "5s";// 等待来自节点的ping响应的时间。默认为5 s

private boolean ignoreClusterName = false;//是否忽略集群名称

private String nodesSamplerInterval = "5s";// 对列出和连接的节点进行采样的频率。默认为5 s

private TransportClient client;

②启动方法

@Override

protected void doStart( ) throws Exception {

buildClient();

logger.info( "elasticSearch client is connected");

super.doStart( );

}

protected void buildClient( ) throws Exception {

client = new PreBuiltTransportClient( settings( ) );

Assert.hasText( clusterNodes, "[Assertion failed] clusterNodes settings missing." );

for( String clusterNode : clusterNodes.split( ";" )) {

String hostName = clusterNode.substring( 0,clusterNode.indexOf( ":" ) );

String port = clusterNode.substring( clusterNode.indexOf( ":" )+1,clusterNode.length( ) );

Assert.hasText( hostName, "[Assertion failed] missing host name in 'clusterNodes'" );

Assert.hasText( port, "[Assertion failed] missing port in 'clusterNodes'" );

logger.info( "adding transport node : " + clusterNode );

client.addTransportAddress( new InetSocketTransportAddress( InetAddress.getByName( hostName ), Integer.valueOf( port ) ) );

}

client.connectedNodes( );

}

private Settings settings( ) {

return Settings.builder( ).put( "cluster.name", clusterName ).put( "client.transport.sniff", sniff )

.put( "client.transport.ignore_cluster_name", ignoreClusterName )

.put( "client.transport.ping_timeout", pingTimeout )

.put( "client.transport.nodes_sampler_interval", nodesSamplerInterval ).build( );

}

③停止方法

@Override

protected void doStop( ) throws Exception {

try {

logger.info( "Closing elasticSearch client" );

if( client != null ) {

client.close( );

}

} catch( final Exception e ) {

logger.error( "Error closing ElasticSearch client: ", e );

}

super.doStop( );

}

④设置单例

private ElasticsearchClient(){}

public static ElasticsearchClient getInstance(){

return InstanceHolder.instance;

}

private static final class InstanceHolder {

public static final ElasticsearchClient instance = new ElasticsearchClient( );

}

⑤ 提供getClient方法

public TransportClient getClient(){

return client;

}

3.sping 配置

init-method="start" destroy-method="stop">

4.启动

public static void main( String[] args ) throws Exception {

App.getInstance( ).start( );//可替换成其他加载spring的方式

}

5.数据的增删改

① 单条数据插入

public static void insert( ) {

TransportClient client = ElasticsearchClient.getInstance( ).getClient( );

//bill-->索引,submit-->类型

IndexResponse response =client.prepareIndex( "bill", "submit" ).setSource( "{\"mobile\":\"14445424" + i + "\",\"status\":\"1\",\"orgId\":\"553\",\"apId\":\"ap01\",\"bizCode\":\"001\"}" ).get( );

System.out.println( response.getIndex( ) + "-" + response.getId( ) + "-" +esponse.getType( ) );

}

②批量插入、删除

bulk

public static void bluk( ) {

TransportClient client = ElasticsearchClient.getInstance( ).getClient( );

BulkRequestBuilder bulkRequest = client.prepareBulk( );

for( int i = 0; i < 1000; i++ ) {

//可add index/delete 请求

bulkRequest.add( client.prepareIndex( "bill", "submit" ).setSource("{\"mobile\":\"144dfdf5424" + i + "\",\"status\":\"5\",\"orgId\":\"5ds5\",\"apId\":\"ap03\",\"bizCode\":\"002\"}" ) );

bulkRequest.add(client.prepareDelete( "bill", "submit" ,"1" ));//index,type,id

}

//此时发送处理请求

BulkResponse bulkResponse = bulkRequest.get( );

if( bulkResponse.hasFailures( ) ) {

//失败处理

}

}

③ BulkProcessor--它提供了一个简单的接口,可以根据请求的数量或大小,或在给定的时间段后自动执行批量操作。

BulkProcessor bulkProcessor = BulkProcessor.builder(

client, <1>

new BulkProcessor.Listener() {

@Override

public void beforeBulk(long executionId,

BulkRequest request) { ... } <2>

@Override

public void afterBulk(long executionId,

BulkRequest request,

BulkResponse response) { ... } <3>

@Override

public void afterBulk(long executionId,

BulkRequest request,

Throwable failure) { ... } <4>

})

.setBulkActions(10000) <5>

.setBulkSize(new ByteSizeValue(5, ByteSizeUnit.MB)) <6>

.setFlushInterval(TimeValue.timeValueSeconds(5)) <7>

.setConcurrentRequests(1) <8>

.setBackoffPolicy(

BackoffPolicy.exponentialBackoff(TimeValue.timeValueMillis(100), 3)) <9>

.build();

说明:

<1> elasticsearch客户端

<2> 每个批量请求前调用,例如可以查询numberOfActions->request.numberOfActions()

<3> 每个批量执行后调用此方法。例如可以检查是否有一些失败的请求->response.hasFailures()

<4> 每个批量执行后,抛出了异常调用此方法,大部分失败了

<5> 设置批量大小,比如每到10000个批次就处理

<6> 设置数据量大小,比如每5M处理一次

<7> 设置定时处理间隔,比如每5s处理一次

<8> 设置并发请求的数量。值为0意味着只有一个单一的请求被允许执行。值为1时表示1个并发请求,请求是累计的批次请求

<9> 设置一个补偿政策,当一次批量请求失败,并抛出EsRejectedExecutionException (表明请求处理不过来)的异常时,初次等待100ms重试,重试3次,重试等待时间呈指数增长,禁用补偿政策,通过设置BackoffPolicy.noBackoff().

默认值:

bulkActions = 1000

bulkSize = 5mb

不设置 flushInterval

concurrentRequests = 1

backoffPolicy设置次8重试和开始50毫秒的延迟。总等待时间大约是5.1秒。

添加的请求

IndexRequest、DeleteRequest、UpdateRequest、还有upsert的请求

bulkProcessor.add(new IndexRequest("twitter", "tweet", "1").source(/* your doc here */));

bulkProcessor.add(new DeleteRequest("twitter", "tweet", "2"));

bulkProcessor.add(new UpdateRequest( "report", "test", "2" ).doc( "{\"orgId\":\"1\"}" ))

//id存在则更新否则就插入

bulkProcessor.add(new UpdateRequest( "report", "test", "2" ).doc( "{\"orgId\":\"1\"}" ).upsert( /* your doc here */))

BulkProcessor关闭

当文档加载到 BulkProcessor后,通过使用awaitClose或 close方法将其关闭:

bulkProcessor.awaitClose(10, TimeUnit.MINUTES);

或者

bulkProcessor.close();

如果被设置flushInterval,这两种方法都可以flush任何剩余的文档,并禁用所有其他预定的flush政策。如果启用了并发请求,在等待的超时时间内完成了所有的bulk请求,awaitClose方法将会返回true ,否则会返回false。close方法不等待任何剩余的批量请求完成并立即退出。

④update --当id不存在时将会抛出异常

public static void update( ) throws InterruptedException, ExecutionException {

TransportClient client = ElasticsearchClient.getInstance( ).getClient( );

UpdateRequest updateRequest = new UpdateRequest( "report", "test", "338799bd8c40e1963fd56557fb161c" ).doc( "{\"orgId\":\"333\"}" );

client.update( updateRequest ).get( );

}

⑤upsert--id不存在时就插入

public static void upsert( ) throws InterruptedException, ExecutionException {

TransportClient client = ElasticsearchClient.getInstance( ).getClient( );

UpdateRequest updateRequest = new UpdateRequest( "report", "test", "338799bd8c40e1963fd56557fb161c" ).doc( "{\"orgId\":\"333\"}" ).upsert(/*source*/ );

client.update( updateRequest ).get( );

}

⑥分组

分组的结果是树形结构的json,使用时需要自行拼装需要的对象

{

"aggregations": {

"ap_count": {

"doc_count_error_upper_bound": 0,

"sum_other_doc_count": 0,

"buckets": [

{

"key": "ap02",

"doc_count": 304000,

"org_count": {

"doc_count_error_upper_bound": 0,

"sum_other_doc_count": 0,

"buckets": [

{

"key": "5ds5",

"doc_count": 300000

},

{

"key": "5ds3",

"doc_count": 2000

},

{

"key": "5ds4",

"doc_count": 2000

}

]

}

},

{

"key": "ap03",

"doc_count": 300000,

"org_count": {

"doc_count_error_upper_bound": 0,

"sum_other_doc_count": 0,

"buckets": [

{

"key": "5ds5",

"doc_count": 300000

}

]

}

}

]

}

}

}

java code

public static void aggregation( ) {

SearchRequestBuilder sbuilder = ElasticsearchClient.getInstance( ).getClient( ).prepareSearch( "bill" ).setTypes( "submit" );

TermsAggregationBuilder apBuilder = AggregationBuilders.terms( "ap_count" ).field( "apId" );

TermsAggregationBuilder orgBuilder = AggregationBuilders.terms( "org_count" ).field( "orgId" );

apBuilder.subAggregation( orgBuilder );

sbuilder.addAggregation( apBuilder );

SearchResponse response = sbuilder.execute( ).actionGet( );

Map aggMap = response.getAggregations( ).asMap( );

StringTerms teamAgg = (StringTerms) aggMap.get( "ap_count" );

Iterator teamBucketIt = teamAgg.getBuckets( ).iterator( );

while( teamBucketIt.hasNext( ) ) {

Bucket buck = teamBucketIt.next( );

String key = buck.getKeyAsString( );

long count = buck.getDocCount( );

System.out.println(key+"--"+count);

Map subaggmap = buck.getAggregations( ).asMap( );

StringTerms orgAgg = (StringTerms) subaggmap.get( "org_count" );

Iterator orgBucketIt = orgAgg.getBuckets( ).iterator( );

while(orgBucketIt.hasNext( )){

Bucket orgBuck = orgBucketIt.next( );

String orgKey=orgBuck.getKeyAsString( );

long orgCount = orgBuck.getDocCount( );

System.out.println(orgKey+"--"+orgCount);

}

}

}

6.数据查询

①get--根据index,type,id

GetResponse response = client.prepareGet("twitter", "tweet", "1").get();

可设置是否多个线程处理请求,默认为true

GetResponse response = client.prepareGet("twitter", "tweet", "1")

.setOperationThreaded(false)

.get();

②根据条件查询、分页

public static void queryPage(){

TransportClient client = ElasticsearchClient.getInstance( ).getClient( );

SearchResponse response = client.prepareSearch("bill")

.setTypes("submit")

.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)

.setQuery(QueryBuilders.termQuery("orgId", "5ds5")) // Query

//.setPostFilter(QueryBuilders.rangeQuery("age").from(12).to(18)) // Filter

.setFrom(0).setSize(60).setExplain(true)

.get();

SearchHits hits = response.getHits();

for (SearchHit searchHit : hits) {

Map source = searchHit.getSource();

for(Object key : source.keySet( )){

System.out.println(key+"-" +source.get( key ));

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值