数字图像处理 matlab 报告总结,matlab数字图像处理实验报告

《matlab数字图像处理实验报告》由会员分享,可在线阅读,更多相关《matlab数字图像处理实验报告(39页珍藏版)》请在金锄头文库上搜索。

1、作业要求:按照下面的实验提示自行完成下列图像处理实验,图像处理中的图片必须使用自己准备图片,并且大小调整为 521*512 或者 256*256.实验一 常用 MATLAB 图像处理命令一、实验目的1、熟悉并掌握 MATLAB 工具的使用;2、实现图像的读取、显示、代数运算和简单变换。二、实验环境MATLAB 6.5 以上版本、WIN XP 或 WIN2000 计算机三、常用函数 读写图像文件1 imreadimread 函数用于读入各种图像文件,如:a=imread(e:w01.tif)2 imwriteimwrite 函数用于写入图像文件,如:imwrite(a,e:w02.tif,tif。

2、)3 imfinfoimfinfo 函数用于读取图像文件的有关信息,如:imfinfo(e:w01.tif) 图像的显示1 imageimage 函数是 MATLAB 提供的最原始的图像显示函数,如:a=1,2,3,4;4,5,6,7;8,9,10,11,12;image(a); 2 imshowimshow 函数用于图像文件的显示,如:i=imread(e:w01.tif);imshow(i);title(原图像)%加上图像标题3 colorbarcolorbar 函数用显示图像的颜色条,如:i=imread(e:w01.tif);imshow(i);colorbar;4 figurefig。

3、ure 函数用于设定图像显示窗口,如:figure(1); /figure(2);5 subplot 把图形窗口分成多个矩形部分,每个部分可以分别用来进行显示。Subplot(m,n,p)分成 m*n 个小窗口,在第 p 个窗口中创建坐标轴为当前坐标轴,用于显示图形。6 plot绘制二维图形plot(y)Plot(x,y)xy 可以是向量、矩阵。 图像类型转换1 rgb2gray把真彩图像转换为灰度图像i=rgb2gray(j)2 im2bw通过阈值化方法把图像转换为二值图像I=im2bw(j,level)Level 表示灰度阈值,取值范围 01(即 0.n),表示阈值取自原图像灰度范围的 n。

4、%3 imresize改变图像的大小I=imresize(j,m n)将图像 j 大小调整为 m 行 n 列 图像运算1 imadd两幅图像相加,要求同样大小,同种数据类型Z=imadd(x,y)表示图像 x+y2 imsubstract两幅图像相减,要求同样大小,同种数据类型Z=imsubtract(x,y) 表示图像 x-y3 immultiplyZ=immultiply(x,y) 表示图像 x*y4 imdivideZ=imdivide(x,y) 表示图像 x/y四、实验内容(请将实验程序填写在下方合适的位置,实验图像结果拷屏粘贴)1、读入一幅 RGB 图像,变换为灰度图像和二值图像,并。

5、在同一个窗口内分成三个子窗口来分别显示 RGB 图像和灰度图像,注上文字标题。a=imread(f:1.jpg)i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);title(原图像)subplot(3,1,2);imshow(i);title(灰度图像)subplot(3,1,3);imshow(I);title(二值图像) 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。a=imread(f:1.jpg)A=imresize(a,800 800)b=imread(f:2.jpg)B=。

6、imresize(b,800 800)Z1=imadd(A,B)Z2=imsubtract(A,B)Z3=immultiply(A,B)Z4=imdivide(A,B)subplot(3,2,1); imshow(A);title(原图像 A)subplot(3,2,2); imshow(B);title(原图像 B)subplot(3,2,3); imshow(Z1);title(加法图像)subplot(3,2,4); imshow(Z2);title(减法图像)subplot(3,2,5); imshow(Z3);title(乘法图像)subplot(3,2,6); imshow(Z2)。

7、;title(除法图像)3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。a=imread(f:1.jpg);m = imadjust(a,0.5;1) ;%图像变亮n = imadjust(a,0;0.5) ;%图像变暗g=255-a;%负片效果subplot(2,2,1);imshow(a);title(原图像)subplot(2,2,2);imshow(m);title(图像变亮)subplot(2,2,3);imshow(n);title(图像变暗) subplot(2,2,4);imshow(g);title(负片效果) 。

8、4、熟悉数字图像处理常用函数的使用,调出帮助文档查看其各种不同用法。方法:选择函数(函数所在区变暗) ,点右键弹出菜单,选择“Help on Selection”五、实验总结分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。实验四 常用图像增强方法一、实验目的1、熟悉并掌握 MATLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。二、实验环境MATLAB 6.5 以上版本、WIN XP 或 WIN2000 计算机三、相关知识1 imnoiseimnoise 函数用于对图像生成模拟噪声,如:i=imread(e:w01.tif);j=imnoise(i,ga。

9、ussian,0,0.02);模拟均值为 0 方差为 0.02 的高斯噪声,j=imnoise(i,salt&pepper, 0.04) 模拟叠加密度为 0.04 的椒盐噪声2 fspecialfspecial 函数用于产生预定义滤波器,如:h=fspecial(sobel);%sobel 水平边缘增强滤波器h=fspecial(gaussian);%高斯低通滤波器h=fspecial(laplacian);%拉普拉斯滤波器h=fspecial(log);%高斯拉普拉斯(LoG)滤波器h=fspecial(average);%均值滤波器3 基于卷积的图像滤波函数imfilter 函数, fil。

10、ter2 函数,二维卷积 conv2 滤波, 都可用于图像滤波,用法类似,如:i=imread(e:w01.tif); h=1,2,1;0,0,0;-1,-2,-1;%产生 Sobel 算子的水平方向模板j=filter2(h,i);或者:h = fspecial(prewitt)I = imread(cameraman.tif);imshow(I); H = fspecial(prewitt); %预定义滤波器M = imfilter(I,H);imshow(M)或者:i=imread(e:w01.tif);h=1,1,1;1,1,1;1,1,1;h=h/9;j=conv2(i,h);4 其。

11、他常用滤波举例(1)中值滤波medfilt2 函数用于图像的中值滤波,如:i=imread(e:w01.tif);j=medfilt2(i,M N);对矩阵 i 进行二维中值滤波,领域为 M*N,缺省值为 3*3(2)利用拉氏算子锐化图像, 如:i=imread(e:w01.tif);j=double(i); h=0,1,0;1,-4,0;0,1,0;%拉氏算子k=conv2(j,h,same);三、实验步骤1、采用二维中值滤波函数 medfilt2 对受椒盐噪声干扰的图像滤波,窗口分别采用 3*3,5*5,7*7I = imread(f:lena.png);J = imnoise(I,sal。

12、t & pepper,0.04);K1 = medfilt2(J,3 3);%对矩阵 i 进行二维中值滤波,领域为 3*3 K2 = medfilt2(J,5 5);K3 = medfilt2(J,7 7);subplot(2,2,1);imshow(J);title(椒盐噪声干扰图像)subplot(2,2,2);imshow(K1);title(领域为 3*3 二维中值滤波)subplot(2,2,3);imshow(K2);title(领域为 5*5 二维中值滤波) subplot(2,2,4);imshow(K3);title(领域为 7*7 二维中值滤波) 2、采用 MATLAB 中。

13、的函数 filter2 对受噪声干扰的图像进行均值滤波I = imread(f:lena.png);j=imnoise(i,gaussian,0,0.02);%模拟均值为 0 方差为 0.02 的高斯噪声,M= filter2(fspecial(average,9),J)/255; %模板尺寸为 9subplot(2,1,1);imshow(j);title(噪声干扰图像)subplot(2,1,2);imshow(M);title(改进后的图像)3、采用三种不同算子对图像进行锐化处理。i=imread(f:1.jpg)I=rgb2gray(s)H=fspecial(sobel)%应用 Sob。

14、el 算子锐化图像I1=filter2(H,I)%Sobel 算子滤波锐化H=fspecial(prewitt)%应用 prewitt 算子锐化图像I2=filter2(H,I)%prewitt 算子滤波锐化H=fspecial(log)%应用 log 算子锐化图像I3=filter2(H,I)%log 算子滤波锐化subplot(2,2,1);imshow(i);title(原图像)subplot(2,2,2);imshow(I1);title(Sobel 算子锐化图像 )subplot(2,2,3);imshow(I2);title(prewitt 算子锐化图像) subplot(2,2,。

15、4);imshow(I3);title(log 算子锐化图像) 四、实验总结1、比较不同平滑滤波器的处理效果,分析其优缺点2、比较不同锐化滤波器的处理效果,分析其优缺点实验五 图像恢复和图像分割一、实验目的1、熟悉并掌握 MATLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的恢复和分割技术。二、实验环境MATLAB 6.5 以上版本、WIN XP 或 WIN2000 计算机三、相关知识1 deconvwnr维纳滤波,用法:J = deconvwnr(I,PSF,NSR) 用维纳滤波算法对图片 I 进行图像恢复后返回图像 J。 I 是一个 N 维数组。PSF 是点扩展函数的卷积。NSP 是加性噪声的噪声对信号的功率比。如:I = im2double(imread(cameraman.tif); imshow(I); title(Original Image ); %模拟运动模糊 Matlab 中文论坛 LEN = 21; THETA = 11; PSF = fspecial(motion, LEN, THETA); blurred = imfilter(I, PSF, conv, circular); figure, imshow(bl。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页