一位安分的码农
码龄6年
关注
提问 私信
  • 博客:479,807
    社区:335
    480,142
    总访问量
  • 108
    原创
  • 41,020
    排名
  • 9,818
    粉丝
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-01-23
博客简介:

一位安分的码农的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    3,791
    当月
    12
个人成就
  • 获得1,584次点赞
  • 内容获得2,028次评论
  • 获得3,072次收藏
  • 代码片获得23,231次分享
创作历程
  • 9篇
    2024年
  • 9篇
    2023年
  • 20篇
    2022年
  • 56篇
    2021年
  • 14篇
    2020年
成就勋章
TA的专栏
  • 大语言模型
    14篇
  • 数据清洗
    2篇
  • linux
    7篇
  • pytorch实战
    6篇
  • yolov5实战
    10篇
  • ArcGIS
    1篇
  • tensorflow实战
    7篇
  • 数学建模
    17篇
  • 通信
    2篇
  • 数据库实战
    1篇
  • MATLAB
    5篇
  • 深度学习
    22篇
  • 图像处理
    6篇
  • Arduino
    2篇
  • C51
    1篇
  • Android
    4篇
  • C++
    1篇
  • 树莓派
    3篇
  • 人文
  • 空间离子
    1篇
兴趣领域 设置
  • 人工智能
    计算机视觉深度学习自然语言处理知识图谱
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

184人参与 去创作
  • 最近
  • 资源
  • 代码仓
  • 问答
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

人工智能与人工计算的发展——孙凝晖院士

计算技术的发展历史大致可分为四个阶段,算盘的出现标志着人类进入第一代——机械计算时代,第二代——电子计算的标志是出现电子器件与电子计算机,互联网的出现使我们进入第三代——网络计算,当前人类社会正在进入第四阶段——智能计算。早期的计算装置是手动辅助计算装置和半自动计算装置,人类计算工具的历史是从公元1200年的中国算盘开始,随后出现了纳皮尔筹(1612年)和滚轮式加法器(1642年),到1672年第一台自动完成四则运算的计算装置——步进计算器诞生了。机械计算时期已经出现了现代计算机的一些基本概念。
原创
发布博客 2024.05.27 ·
1218 阅读 ·
6 点赞 ·
0 评论 ·
14 收藏

噪声的力量:重新定义 RAG 系统的检索

该文得到了一个反常识的结论,当无关的噪声文档放在正确的位置时,实际上有助于提高RAG的准确性。
原创
发布博客 2024.04.06 ·
1051 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

中文Mistral模型介绍(Chinese-Mistral)——中文大语言模型

我们基于Mistral-7B进行了中文词表扩充和增量预训练,增强了Mistral-7B在中文任务上的表现,并提高了其对中文文本的编解码效率。
原创
发布博客 2024.04.06 ·
4879 阅读 ·
46 点赞 ·
0 评论 ·
26 收藏

开源中文大语言模型汇总

Mistral是超越llama的最强开源模型,由于发布时间晚于llama,因此其中文版本较少。llama作为开源社区的宠儿,有许多基于它的中文模型,下面列举比较流行的一些模型。
原创
发布博客 2024.04.02 ·
1627 阅读 ·
11 点赞 ·
1 评论 ·
12 收藏

普林斯顿DeepMind用数学证明:LLM不是随机鹦鹉!「规模越大能力越强」有理论根据

一开始,LLM可能选不准词,算法就会给出一个损失值,即在某个高维的数学空间中,LLM给出的初始答案和原句正确答案之间的「距离」(distance),然后用这个值来对参数进行微调。他们注意到,随着模型的增大,无论是在大小还是在训练数据量上,它在测试数据上的损失(在训练后对新文本的预测与正确答案之间的差异)以一种非常特定的方式减少。接下来,两位研究人员又找到了一种解释更大模型所获得的能力的方法——随着LLM的大小增加和测试损失减小,技能节点的随机组合开始连接到个别文本节点。研究这些图揭示了节点之间的某些关系。
原创
发布博客 2024.04.02 ·
302 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

采用大语言模型进行查询重写——Query Rewriting via Large Language Models

查询重写是在将查询传递给查询优化器之前处理编写不良的查询的最有效技术之一。手动重写不可扩展,因为它容易出错并且需要深厚的专业知识。类似地,传统的查询重写算法只能处理一小部分查询:基于规则的技术不能推广到新的查询模式,并且基于综合的技术无法处理复杂的查询。幸运的是,大型语言模型(大语言模型)的兴起,配备了广泛的常识和先进的推理能力,为解决一些以前未解决的问题带来了希望。在本文中,我们提出了GenRewrite,这是第一个利用大语言模型进行查询重写的整体系统。
原创
发布博客 2024.04.02 ·
1814 阅读 ·
11 点赞 ·
1 评论 ·
21 收藏

哈工大中文mistral介绍(Chinese-Mixtral-8x7B)

Chinese-Mixtral-8x7B基于Mistral发布的模型Mixtral-8x7B进行了中文扩词表增量预训练。扩充后的词表显著提高了模型对中文的编解码效率,并通过大规模开源语料对扩词表模型进行增量预训练,使模型具备了强大的中文生成和理解能力。开源地址见https://github.com/HIT-SCIR/Chinese-Mixtral-8x7B。参考https://github.com/HIT-SCIR/Chinese-Mixtral-8x7B。该项目开源了模型权重和扩词表增量预训练代码。
原创
发布博客 2024.02.29 ·
1411 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

继续预训练对大语言模型的影响

本文研究了大型语言模型(LLMs)中不断学习(CL)的不断发展领域,重点是制定有效和可持续的训练策略。我们主要关注持续领域自适应预训练,这是一个旨在使LLMs能够整合来自各个领域的新信息,同时保留先前学到的知识并增强跨领域知识转移的能力,而无需依赖于特定领域的识别过程。与以往主要集中于有限的任务或领域并主要旨在解决遗忘问题的研究不同,我们的研究评估了LLMs在实际场景中适应不断变化的数据环境的能力和特点。为此,我们引入了一个旨在衡量LLMs对这些不断演变的数据环境的适应能力的新基准,提供了全面的评估框架。
原创
发布博客 2024.02.29 ·
1602 阅读 ·
28 点赞 ·
0 评论 ·
16 收藏

huggingface上传或发布自己的模型(大语言模型LLM)

在注册huggingface账号,登录账号后,在https://huggingface.co/settings/tokens创建token,注意需要将token的类型设置为WRITE。
原创
发布博客 2024.02.28 ·
2078 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

使用ChatGLMTokenizer处理json格式数据

我下载了一些中文wikipedia数据,准备采用ChatGLMTokenizer对齐进行清洗,整理为预训练语料。
原创
发布博客 2023.09.07 ·
1202 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux创建新用户

输入密码,即可成功创建用户。username为用户名。打开该用户的密码设置。
原创
发布博客 2023.08.07 ·
199 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

wget下载报错error 403

将命令改为:wget -U ‘User Agent’ -O ‘文件名称’ “下载地址”
原创
发布博客 2023.07.27 ·
1391 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

python jsonl格式文件转为json格式文件

转化为格式1的代码:(需要注意的是,读取文件和写入文件的encoding需要指定为一致,不然会导致gbk和utf混用,导致评测和微调的时候出现字符错误)转化为格式2的代码:(注意需要将jsonl的’转化为”)
原创
发布博客 2023.06.25 ·
3259 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

Linux系统安装Anaconda

在这个网站https://pytorch.org/get-started/previous-versions/找到自己想要的版本。2、我安装的是Anaconda3-2020.11-Linux-x86_64.sh,所以下载安装包的命令是。4、重新打开终端,输入如下内容检验是否成功安装。若成功显示conda版本,即表示安装成功。6、下面我们安装pytorch。查找自己想要安装的版本。
原创
发布博客 2023.05.26 ·
346 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

linux(ubuntu)安装Docker教程-超详细超简单

经过上述配置,我们已经成功安装Docker。但是,现在只有管理员能够使用Docker,其他用户没有使用Docker的权限,下面我们再进行配置,使得其他用户也能使用Docker。5、添加Docker源,这里我们选择的是stable稳定版。8、这里我们安装安装Docker的社区版。7、查看有哪些Docker版本可以安装。现在,其他用户也能使用Docker了。12、设置Docker开机自动启动。4、为系统添加Docker的密钥。11、查看Docker是否开启。10、启动Docker服务。1、首先进入管理员权限。
原创
发布博客 2023.05.22 ·
2551 阅读 ·
6 点赞 ·
0 评论 ·
25 收藏

基于GPT-2实现图像文本生成

使用google的vit-base-patch16-224模型处理图像,做encoder。最后通过VisionEncoderDecoderModel将这两个模型粘起来。使用GPT-2模型处理文本,做decoder。
原创
发布博客 2023.03.31 ·
1190 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

下载huggingface-transformers模型至本地,并使用from_pretrained方法加载

我们经常会使用到hugging face开源的transformers包,调用from_pretrained方法直接下载模型时,经常会下载很久甚至失败.而且由于它自动将下载的模型保存至文件夹下,这不方便我们对模型进行备份。为了解决这个问题,下面我们将实现“下载huggingface-transformers模型至本地,并使用from_pretrained方法加载”。
原创
发布博客 2023.03.31 ·
24022 阅读 ·
16 点赞 ·
5 评论 ·
61 收藏

python实现ChatGPT连续多轮对话

注意,api_key需要改成自己的密钥才能成功运行。
原创
发布博客 2023.03.26 ·
4625 阅读 ·
3 点赞 ·
1 评论 ·
33 收藏

pytorch实战(五)——时间序列多步预测的五种方法介绍

当需要根据已有的时间序列数据,预测未来多个时刻的状态时,被称之为时间序列多步预测。时间序列多步预测有五种策略,分别为:1、直接多步预测(Direct Multi-step Forecast)2、递归多步预测(Recursive Multi-step Forecast)3、直接递归混合预测(Direct-Recursive Hybrid Forecast)4、多输出预测(Multiple Output Forecast)5、seq2seq预测(seq2seq Forecast)
原创
发布博客 2022.12.25 ·
3969 阅读 ·
1 点赞 ·
0 评论 ·
44 收藏

pytorch实战(四)——模型的保存与读取

有时候,我们想要保存训练好的模型,等需要用来进行图像分类等任务的时候,不经训练,直接加载使用。然后新建predict.py,采用。
原创
发布博客 2022.11.28 ·
1760 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏
加载更多