pandas处理mysql 展现wpf_Python:用Pandas读CSV文件写到MySQL

汇总一下,自己最近在使用Python读写CSV存数据库中遇到的各种问题。

上代码:

reload(sys)

sys.setdefaultencoding('utf-8')

host = '127.0.0.1'

port = 3306

db = 'world'

user = 'root'

password = '123456'

con = MySQLdb.connect(host=host,charset="utf8",port=port,db=db,user=user,passwd=password)

try:

df = pd.read_sql(sql=r'select * from city', con=con)

df.to_sql('test',con=con,flavor='mysql')

except Exception as e:

print(e.message)

不出意外的话会打印出一句:database flavor MySQL is not supported

在stackoverflow上找到了答案:The flavor ‘mysql’ is deprecated in pandas version 0.19.

我们换一种方式:

reload(sys)

sys.setdefaultencoding('utf-8')

host = '127.0.0.1'

port = 3306

db = 'world'

user = 'root'

password = '123456'

engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s/%s") % (user, password, host, db))

try:

df = pd.read_sql(sql=r'select * from city', con=engine)

df.to_sql('test',con=engine,if_exists='append',index=False)

except Exception as e:

print(e.message)

运行下,ok,可以存入了index参数表示是否把DataFrame的index当成一列来存储,一般来说是不需要的,所以赋值为False

现在看似问题都解决了,但是还有一个小问题。

假如我有一个含有中文的csv文件(本人Window):

name age class

小明 15 一年级

小张 18 三年级

engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s/%s") % (user, password, host, db))

try:

df = pd.read_csv(r'C:\Users\xx\Desktop\data.csv')

print(df)

df.to_sql('test', con=engine, if_exists='append', index=False)

except Exception as e:

print(e.message)

打印处理以后乱码了。我们在读csv时候最好指定编码,我的本地GBK:

df = pd.read_csv(r'C:\Users\xx\Desktop\data.csv',encoding='gbk')

我们可以正常的打印信息了,但是又报错了,错误如下:

UnicodeEncodeError: ‘latin-1’ codec can’t encode characters in position 0-1: ordinal not in range(256)

还是编码问题,原因呢,我们存到数据库时候没有指定编码。解决这个问题时候也是被坑了一把,网上说什么的都有。过程就不说了,看代码:

engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s/%s?charset=utf8") % (user, password, host, db))

解决了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值