matlab1-8章课后答案,matlab实验1-8带答案,.doc_十八文库18wk.cn

6894c33e9ea850e48a01b600503581d3.gifmatlab实验1-8带答案,,.doc

实 验 一 Matlb基 本 操 作一 . 实 验 目 的 :1. 掌 握 矩 阵 和 多 项 式 构 造 和 运 算 方 法 。2. 能 够 用 常 用 函 数 进 行 简 单 问 题 求 解 。3. 能 够 进 行 atlb数 值 运 算 。二 . 实 验 内 容 :1. 用 Matl可 以 识 别 的 格 式 输 入 下 面 两 个 矩 阵A=49813275, B= 345981276238ii再 求 出 它 们 的 乘 积 矩 阵 C。2. 解 线 性 方 程 543210975861X=6043923. 设 矩 阵 A=1, B=12, 求 ⑴ 2A+B⑵ 42-3⑶ B⑷ A⑸ -A4. 求 解 一 元 六 次 方 程 组 36x+1254+73x81=0的 根5. 求 多 项 式 36+125478被 ( -) (+5x)除 后 的 结 果6. 设 二 阶 矩 阵 A, B, X, 满 足 -2A=BX, 其 中 A=21, B=02,求 矩 阵 X。实 验 一 Matlab 基 本 操 作 ( 一 ) 一 . 实 验 目 的 : 1. 掌 握 矩 阵 和 多 项 式 构 造 和 运 算 方 法 。 2. 能 够 用 常 用 函 数 进 行 简 单 问 题 求 解 。 3. 能 够 进 行 Matlab 数 值 运 算 。 二 . 实 验 内 容 : 1、 〉 〉 a=[1 2 3 3;2 3 5 7;1 3 5 7;3 2 3 9;1 8 9 4]; b=[1+4i 4 3 6 7 8;2 3 3 5 5 4+2i;2 6+7i 5 3 4 2;1 8 9 5 4 3]; c=a*b c = 1.0e+002 * Columns 1 through 4 0.1400 + 0.0400i 0.5200 + 0.2100i 0.5100 0.4000 0.2500 + 0.0800i 1.0300 + 0.3500i 1.0300 0.7700 0.2400 + 0.0400i 0.9900 + 0.3500i 1.0000 0.7100 0.2200 + 0.1200i 1.0800 + 0.2100i 1.1100 0.8200 0.3900 + 0.0400i 1.1400 + 0.6300i 1.0800 0.9300 Columns 5 through 6 0.4100 0.3100 + 0.0400i 0.7700 0.5900 + 0.0600i 0.7000 0.5100 + 0.0600i 0.7900 0.6500 + 0.0400i 0.9900 0.7000 + 0.1600i 2、 a=[5 7 6 5 1;7 10 8 7 2;6 8 10 9 3;5 7 9 10 4;1 2 3 4 5]; b=[24 96;34 136;36 144;35 140;15 60]; c=a\b c = 1.0000 4.0000 1.0000 4.0000 1.0000 4.0000 1.0000 4.0000 1.0000 4.0000 3、 a=[3 1 1;2 1 2;1 2 3];b=[1 1 -1;2 -1 0;1 -1 1]; 2*a+b ans = 7 3 1 6 1 4 3 3 7 4*a^2-3*b^2 ans = 42 21 38 40 19 46 40 33 56 实 验 二 Matlab基 本 操 作 ( 二 ) 一 实 验 目 的 : 1. 掌 握 矩 阵 方 程 的 构 造 和 运 算 方 法 2. 掌 握 基 本 Matlab控 制 语 句 3. 学 会 使 用 Matlab绘 图 二 实 验 内 容 1. 求 解 下 列 线 性 方 程 , 并 进 行 解 的 验 证 : 1321597x=0742、 进 行 下 列 计 算 。 ( 1) k=632ii ( 2) 求 出 y=x*sin(x)在 0a=[721-;953-2;15;321];b=[4;7-10];x=a\bx0.4915.62-083a*xns=47-102、 ( ) i=2:63;mysu=(2.^i)mysu1.847e+019( 2) x:.0;y=.*sin();df%斜 率iexid(y1:en-).*dy(2:en) num=[1 7 24 24];den=[1 10 35 50 24];sys=tf(num,den) Transfer function: s^3 + 7 s^2 + 24 s + 24 --------------------------------- s^4 + 10 s^3 + 35 s^2 + 50 s + 24 [a b c d]=tf2ss(num,den) a = -10 -35 -50 -24 1 0 0 0 0 1 0 0 0 0 1 0 b = 1 0 0 0 c =1 7 24 24 d = 0 [z p k]=tf2zp(num,den) z = -2.7306 + 2.8531i -2.7306 - 2.8531i -1.5388 p = -4.0000 -3.0000 -2.0000 -1.0000 k =1 [r,p,h]=residue(num,den) r = 4.0000 -6.0000 2.0000 1.0000 p =-4.0000 -3.0000 -2.0000 -1.0000 h = [] ( 2) a=[2.25 -5 -1.25 -0.5;2.25 -4.25 -1.25 -0.25;0.25 -0.5 -1.25 -0.25;1.25 -1.75 -0.25 -0.75]; 实 验 四 : 控 制 系 统 的 时 域 分 析 一 , 实 验 目 的 1、 使 用 MATLAB分 析 系 统 的 稳 定 性 及 稳 态 性 能 。 2、 分 析 系 统 的 暂 态 性 能 并 会 计 算 暂 态 性 能 指 标 。 二 、 实 验 内 容 1、 已 知 系 统 的 闭 环 传 递 函 数 为 : 38401420)(234 SSG, 分 析系 统 的 稳 定 性 , 并 求 该 系 统 的 单 位 阶 跃 响 应 曲 线 。 2、 已 知 离 散 系 统 5.08.61)(2Z, 求 该 系 统 的 单 位 阶 跃 响 应 曲 线 。 3、 控 制 系 统 的 状 态 空 间 模 型 为 : .3.2.1x= 170x32+ u0y321, 求 该 系 统 在 [0, 3]区 间 上 的 单 位 脉 冲 响 应 曲 线 。 4、 已 知 控 制 系 统 模 型 为 : uxx10962.2.1, xy21, 求 系 统在 y=sint时 的 响 应 。 5、 典 型 二 阶 系 统 如 下 所 示 : 式 中 , n是 自 然 频 率 (无 阻 尼 振 荡 频 率 ), 是 阻 尼 系 数 .要 求 绘 制 出 当 =0.5, 分 别 对 2\4\6\8\10\12时 系 统 的 单 位 阶 跃 响 应 . 、 、 、 、 、 随 着 n的 逐 渐 增 大 , 系 统 的 响 应 速 度 怎 样 变 化 ? 并 从 控 制 原 理 的 角 度 给 出合 理 的 解 释 。 2()nGss实 验 四 : 控 制 系 统 的 时 域 分 析 一 , 实 验 目 的 1、 使 用 MATLAB分 析 系 统 的 稳 定 性 及 稳 态 性 能 。 2、 分 析 系 统 的 暂 态 性 能 并 会 计 算 暂 态 性 能 指 标 。 二 、 实 验 内 容 1、 num=[200];den=[1 20 140 400 384];[z,p]=tf2zp(num,den); i=find(real(p)0);n=length(i); if(n0) disp( unstable ) else disp( stable );end stable t=0:0.1:50;[y,x,t]=step(num,den,t);plot(t,y) 2、 num=[1.6 -1 0];den=[1 -0.8 0.5];[y,x]=dstep(num,den,300);plot(y) 3、 a=[0 1 0;0 0 1;0 -12 -17];b=[0;0;1];c=[2 3 1];d=zeros(1,1); t=0:0.01:3;[y,x,t]=impulse(a,b,c,d,1,t);plot(t,y) 4、 a=[0 1;-6 -9];b=[0;1];c=[1 1];d=zeros(1,1); [num,den]=ss2tf(a,b,c,d) 实 验 五 : 控 制 系 统 的 根 轨 迹 分 析 一 , 实 验 目 的 1、 使 用 MATLAB绘 制 系 统 的 根 轨 迹 。 2、 通 过 根 轨 迹 分 析 系 统 的 性 能 。 二 、 实 验 内 容 1、 已 知 连 续 系 统 的 开 环 传 递 函 数 为 : 32)15()SKSG, 确 定 系 统 开 环 零 、 极 点的 位 置 , 并 绘 制 带 阻 尼 比 和 自 然 振 荡 频 率 栅 格 的 根 轨 迹 图 。 2、 系 统 的 开 环 传 递 函 数 为 : )153(4)2S, 绘 制 系 统 的 根 轨 迹 , 确 定 当 ξ =0.7时 系 统 闭 环 极 点 的 位 置 , 并 分 析 系 统 的 性 能 。 3.已 知 一 个 单 位 负 反 馈 系 统 开 环 传 递 函 数 如 下 : 试 绘 制 系 统 闭 环 的 根 轨 迹 图 , 并 在 根 轨 迹 图 上 任 选 一 点 , 计 算 该 点 的 增 益 K, 以 及 所 有的 极 点 位 置 。 4.设 一 高 阶 系 统 开 环 的 传 递 函 数 为 , 试 绘 制 该 系 统 的 零 极 点 图 及 闭 环 的 根 轨 迹 图 。 三 、 思 考 题 请 简 述 从 根 轨 迹 图 可 分 析 系 统 的 哪 些 性 质 ? ()0.51)(4kGss320.1.81.04369.5()6271sssGs实 验 五 : 控 制 系 统 的 根 轨 迹 分 析 一 , 实 验 目 的 1、 使 用 MATLAB绘 制 系 统 的 根 轨 迹 。 2、 通 过 根 轨 迹 分 析 系 统 的 性 能 。 二 、 实 验 内 容 1、 num=[2 5 1];den=[1 2 3];[p,z]=pzmap(num,den) p =-1.0000 + 1.4142i -1.0000 - 1.4142i z = -2.2808 -0.2192 rlocus(num,den);sgrid 2、 num=[4 3 1];den=[3 5 1 0];rlocus(num,den);sgrid 3、 N1=1; D1=conv([1 0],conv([0.5 1][4 1])); S1=tf(n1,d1); rlocus(sys) 实 验 六 : 控 制 系 统 的 频 域 分 析 一 , 实 验 目 的 1、 使 用 MATLAB绘 制 系 统 的 伯 德 图 、 奈 奎 斯 特 图 。 2、 计 算 系 统 的 相 角 裕 度 和 增 益 裕 度 。 二 、 实 验 内 容 1、 已 知 系 统 的 开 环 传 递 函 数 为 : 14.0)(2SSG, 绘 制 系 统 的 伯 德 图 , 并求 系 统 的 相 角 裕 度 和 增 益 裕 度 。 2、 绘 制 系 统 3215)(SG的 奈 奎 斯 特 图 。 3. 系 统 的 闭 环 函 数 如 下 : 请 画 出 系 统 的 幅 频 特 性 。 4、 已 知 系 统 的 传 递 函 数 如 下 : 当 求 K分 别 取 1700和 6300时 , 系 统 的 极 坐 标 频 率 特 性 图 。 5、 已 知 系 统 开 环 传 递 函 数 )10)(1.(22SSG,用 乃 氏 判 据 判 断 系 统 稳 定 性 。 2()4cks32()51kGss实 验 六 : 控 制 系 统 的 频 域 分 析 一 , 实 验 目 的 1、 使 用 MATLAB绘 制 系 统 的 伯 德 图 、 奈 奎 斯 特 图 。 2、 计 算 系 统 的 相 角 裕 度 和 增 益 裕 度 。 二 、 实 验 内 容 1、 num=[1];den=[1 0.4 1];bode(num,den); [gm,pm,wcg,wpg]=margin(num,den) gm =Inf pm =32.8443 wcg =Inf wpg =1.3567 2、 num=[2 5 1];den=[1 2 3];nyquist(num,den) 3. Num=4;den=[1 2 4]; W=0:0.01:3; G=freqs(num,den,w); Mag=abs(g); Plot(w,mag) 实 验 七 : 控 制 系 统 的 校 正 一 、 实 验 目 的 1、 了 解 根 轨 迹 校 正 法 的 基 本 原 理 。 2、 使 用 频 率 分 析 法 对 系 统 进 行 相 位 超 前 、 迟 后 、 迟 后 -超 前 校 正 。 二 、 实 验 内 容 1、 单 位 反 馈 系 统 的 开 环 传 递 函 数 为 )12.0)()(sskG, 设 计 迟 后 校 正 装置 , 满 足 以 下 条 件 : 开 环 增 益 K=8; 相 角 裕 度 4。 2、 单 位 反 馈 系 统 被 控 对 象 传 递 函 数 为 )105.)(1.)(2.0(3)0 SSG, PID调 节 器 传 递 函 数 为 C3, 比 较 校 正 前 、 后 系 统 的 频 率 特 性 和 单 位 阶 跃 响 应 。 3、 单 位 反 馈 系 统 被 控 对 象 传 递 函 数 为 )4(15)(0SSG, 现 附 加 一 零 点和 一 极 点 , 校 正 环 节 传 递 函 数 )9.4(25)C,分 析 附 加 零 、 极 点 前 后 的 频率 特 性 。 实 验 七 : 控 制 系 统 的 校 正 一 、 实 验 目 的 1、 了 解 根 轨 迹 校 正 法 的 基 本 原 理 。 2、 使 用 频 率 分 析 法 对 系 统 进 行 相 位 超 前 、 迟 后 、 迟 后 -超 前 校 正 。 二 、 实 验 内 容 1、 num0=[8];den0=[0.2 1.2 1 0];[gm1,pm1,wcg1,wpg1]=margin(num0,den0); r=40;w=logspace(-3,1);[mag1,phase1]=bode(num0,den0,w); for epsilon=5:15 r0=(-180+r+epsilon);[i1,ii]=min(abs(phase1-r0)); wc=w(ii);alpha=mag1(ii);t=5/wc;numc=[t,1];denc=[alpha*t,1]; [num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wpg]=margin(num,den); if(pm=r);break;end; end printsys(numc,denc);printsys(num,den); num/den = 8.3842 s + 1 ------------- 95.9177 s + 1 num/den = 67.0733 s + 8 --------------------------------------------- 19.1835 s^4 + 115.3012 s^3 + 97.1177 s^2 + s bode(numc,denc,w);grid; title( 校 正 装 置 ) bode(num,den,w);grid;title( 校 正 后 装 置 ) 实 验 八 、 综 合 练 习 一 、 解 方 程 组 。 6x1+3x2+4x3=3 -2x1+5x2+7x3=-4 8x1-4x2-3x3=-7 二 、 求 系 统 的 传 递 函 数 , 和 闭 环 极 点 。 250 4_ 101.1.02ss 8112.08.s三 、 已 知 系 统 闭 环 传 递 函 数 93)(2sSG, 绘 制 其 单 位 阶 跃 响 应 曲 线 , 并 计 算 其 主 要暂 态 性 能 指 标 。 四 、 已 知 系 统 开 环 传 递 函 数 )1(5.0)2()ssk, 绘 制 系 统 根 轨 迹 , 并 求 临界 稳 定 的 k值 。 五 、 已 知 系 统 开 环 传 递 函 数 )().()ssSG, 绘 制 系 统 的 伯 德 图 , 判断 系 统 稳 定 , 求 系 统 的 相 角 裕 度 和 幅 值 裕 度 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值