cnn验证码识别代码_Tensorflow搭建CNN实现验证码识别

​整个项目代码分为三部分:

Generrate_Captcha:

生成验证码图片(训练集,验证集和测试集);

读取图片数据和标签(标签即为图片文件名);

cnn_model:卷积神经网络;

driver:模型训练及评估。

1、配置项

class Config(object):

width = 160 # 验证码图片的宽

height = 60 # 验证码图片的高

char_num = 4 # 验证码字符个数

characters = range(10) # 数字[0,9]

test_folder = 'test' # 测试集文件夹,下同

train_folder = 'train'

validation_folder = 'validation'

tensorboard_folder = 'tensorboard' # tensorboard的log路径

generate_num = (5000, 500, 500) # 训练集,验证集和测试集数量

alpha = 1e-3 # 学习率

Epoch = 100 # 训练轮次

batch_size = 64 # 批次数量

keep_prob = 0.5 # dropout比例

print_per_batch = 20 # 每多少次输出结果

save_per_batch = 20 # 每多少次写入tensorboard

2、生成验证码(class Generate)

验证码图片示例:

0478

check_path():检查文件夹是否存在,如不存在则创建。

gen_captcha():生成验证码方法,写入之前检查是否以存在,如存在重新生成。

3、读取数据(classs ReadData)

read_data():返回图片数组(numpy.array格式)和标签(即文件名);

label2vec():将文件名转为向量;

例:

label = '1327'

label_vec = [0,1,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0]

load_data():加载文件夹下所有图片,返回图片数组,标签和图片数量。

4、定义模型(cnn_model)

采用三层卷积,filter_size均为5,为避免过拟合,每层卷积后面均接dropout操作,最终将的图像转为的矩阵。

大致结构如下:

模型结构

5、训练&评估

next_batch():迭代器,分批次返还数据;

feed_data():给模型“喂”数据;

x:图像数组;

y:图像标签;

keep_prob:dropout比例;

evaluate():模型评估,用于验证集和测试集。

run_model():训练&评估

6、目前效果

目前经过4000次迭代训练集准确率可达99%以上,测试集准确率93%,还是存在一点过拟合,不过现在模型是基于CPU训练的,完成一次训练耗费时间大约4个小时左右,后续调整了再进行更新。

Images for train :10000, for validation : 1000, for test : 1000

Epoch : 1

Step 0, train_acc: 7.42%, train_loss: 1.43, val_acc: 9.85%, val_loss: 1.40, improved:*

Step 20, train_acc: 12.50%, train_loss: 0.46, val_acc: 10.35%, val_loss: 0.46, improved:*

Step 40, train_acc: 9.38%, train_loss: 0.37, val_acc: 10.10%, val_loss: 0.37, improved:

Step 60, train_acc: 7.42%, train_loss: 0.34, val_acc: 10.25%, val_loss: 0.34, improved:

Step 80, train_acc: 7.81%, train_loss: 0.33, val_acc: 9.82%, val_loss: 0.33, improved:

Step 100, train_acc: 12.11%, train_loss: 0.33, val_acc: 10.00%, val_loss: 0.33, improved:

Step 120, train_acc: 9.77%, train_loss: 0.33, val_acc: 10.07%, val_loss: 0.33, improved:

Step 140, train_acc: 8.98%, train_loss: 0.33, val_acc: 10.40%, val_loss: 0.33, improved:*

Epoch : 2

Step 160, train_acc: 8.20%, train_loss: 0.33, val_acc: 10.52%, val_loss: 0.33, improved:*

...

Epoch : 51

Step 7860, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.37%, val_loss: 0.08, improved:

Step 7880, train_acc: 99.61%, train_loss: 0.01, val_acc: 92.28%, val_loss: 0.08, improved:

Step 7900, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.42%, val_loss: 0.08, improved:

Step 7920, train_acc: 100.00%, train_loss: 0.00, val_acc: 92.83%, val_loss: 0.08, improved:

Step 7940, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.77%, val_loss: 0.08, improved:

Step 7960, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.68%, val_loss: 0.08, improved:

Step 7980, train_acc: 100.00%, train_loss: 0.00, val_acc: 92.63%, val_loss: 0.09, improved:

No improvement for over 1000 steps, auto-stopping....

Test accuracy: 93.00%, loss: 0.08

7、Tensorboard

每次训练之前将Tensorboard路径下的文件删除,不然趋势图上会凌乱。

Accurracy

loss

​文源网络,仅供学习之用,如有侵权,联系删除。

我将优质的技术文章和经验总结都汇集在了我的公众号【Python圈子】里,为方便大家学习,还整理了一套学习资料,免费提供给热爱Python的同学! 更有学习交流群,多交流问题才能更快进步~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值