周期三角波傅里叶级数例题_“成也热学,败也热学”的傅里叶先生

本文介绍了傅里叶级数的概念及其在数学和信号处理中的重要性。傅里叶级数允许我们将复杂的周期性函数分解为简单的三角函数和,这一理论源于傅里叶对热传导的研究。虽然起初受到拉格朗日等人的质疑,但随着傅里叶变换的发展,傅里叶级数在图像降噪、声音处理等领域展现出广泛应用。傅里叶的贡献不仅改变了我们理解和处理周期性信号的方式,也奠定了现代信号分析的基础。
摘要由CSDN通过智能技术生成

数学家们从事的工作总是把那些看起来纷繁复杂的问题抽丝剥茧,转化成我们可以方面处理的结果。或者是,他们创造一种方法,可以针对某一项复杂问题,可以去分析我们需要的一些性质。

191c040e660afbc1757ecd2a776bff06.png

数学家 泰勒

大家对泰勒公式应该都比较熟悉了,这个公式是用多项式的和来拟合任意一条已知或者未知的曲线。当我们把一个五花八门的函数用泰勒公式展开之后,它们清一色的都是按照次数从低到高的多项式排列着,你想近似计算,没问题;你想证明不等式,也没问题,你想做曲线拟合,毫无压力。这样通过对简单的代数多项式的分析,最终来达到分析整个函数的目的。将复杂问题逐步细化,再逐步攻破的过程,正是无数数学家孜孜以求的不懈目标。

对于一般函数来说,有没有别的展开办法呢?不仅仅可以展开成代数多项式,比如对于那些有周期性的函数来说。答案当然是有的,19世纪就有人做了这样的工作,现在傅里叶先生登场。

8fccb897fce2d33937b05f7f9a31024f.png

傅里叶

让·巴普蒂斯·约瑟夫·傅里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值