简介:在金融投资领域,利用C++实现自动化交易系统"NezipC++",让开发者可以实时获取股票期货数据并进行自动化交易。本文详细介绍了如何使用Nezip API进行股票和期货的数据获取和交易下单,包括接口调用规范、C++项目构建、实时数据获取、全推数据订阅以及自动化交易策略的实现。NezipC++提供了高效的数据处理和存储方案,支持技术指标和算法模型的自动下单,有助于降低人为错误和提高交易效率。
1. C++在自动化股票期货交易中的应用
1.1 C++在自动化交易中的角色
C++语言因其高性能和灵活性,成为实现复杂自动化交易系统的首选。它允许程序员直接操作内存,构建反应快速且资源消耗小的交易应用。在高频交易(HFT)领域,C++的这些特性尤为重要。
1.2 金融市场中的C++应用案例
从下单系统到风险管理,C++在金融市场的应用无处不在。例如,许多交易所的匹配引擎便是用C++开发的,以确保交易能在微秒级别上快速准确地执行。此外,许多量化策略和算法交易模型也都基于C++进行实现。
1.3 C++在自动化交易中优势的深度解析
C++不仅能够满足快速交易的要求,而且其稳定性和成熟度让开发人员能够构建出可靠的交易系统。相对于解释型语言,C++在执行速度上通常占有优势。然而,使用C++也需要开发人员对内存管理和并发编程有深刻理解,因为不当的代码可能会导致系统崩溃或性能瓶颈。因此,精通C++在自动化股票期货交易中是成功的关键因素之一。
2. Nezip API接口调用规范
在现代的IT行业中,API(应用程序编程接口)已经成为开发人员进行系统集成和快速开发的核心工具。它们为不同系统之间提供了标准化的通信机制,使得开发者能够更加高效地构建和部署应用程序。在本章中,我们将深入探讨Nezip API的规范,这是在自动化股票期货交易中常用的API之一,它如何被有效地调用和应用,以及如何对性能进行优化。
2.1 Nezip API概述
2.1.1 API功能介绍
Nezip API旨在为交易者提供实时的股票和期货市场的数据,以及相关的交易功能。它支持各种接口调用,允许用户完成以下操作:
- 实时获取股票行情信息,包括价格、成交量、涨跌幅度等。
- 执行下单、平仓、撤销委托等交易指令。
- 查询历史数据,帮助用户进行数据分析和预测。
- 监控账户余额和持仓状态,以实时调整交易策略。
- 接收行情更新和订单状态通知,使用户保持对市场动态的敏感度。
2.1.2 API版本更新与历史
Nezip API自推出以来,经历了多个版本的更新,每次更新都带来了更多的功能、更稳定的性能,以及更好的用户体验。初始版本主要聚焦于提供基本的行情数据和交易功能,随后的版本逐步加入了更多的高级功能,例如账户管理、日志审计、策略回测等。
更新历史的总结如下:
- 1.0版:基本行情数据和交易执行功能。
- 2.0版:增加了历史数据查询接口和账户状态监控。
- 3.0版:引入了高级数据订阅服务和实时数据推送机制。
- 4.0版:优化了性能,并且增加了安全性改进措施。
2.2 Nezip API的环境配置
2.2.1 环境搭建步骤
为了使用Nezip API,开发者必须遵循一系列的环境搭建步骤。以下是搭建环境的基本流程:
- 注册并登录Nezip API平台,获取API访问密钥和密钥ID。
- 下载Nezip API的SDK,并解压至开发环境的合适目录。
- 配置开发环境,如安装必要的依赖库和工具。
- 根据平台和编程语言,引入Nezip API的库文件到项目中。
- 初始化API对象,提供密钥ID和访问密钥进行授权认证。
- 进行简单的测试调用,验证环境搭建成功。
2.2.2 常见问题与解决方案
在环境搭建的过程中,开发者可能会遇到一些常见的问题。这些问题及解决方案如下:
-
问题:无法成功初始化API对象,出现权限认证错误。 解决方案:检查密钥ID和访问密钥是否输入正确,确认API服务当前是否可用。
-
问题:SDK库无法被正确引入到项目中。 解决方案:确认SDK库的安装路径是否正确指定在项目配置文件中,或尝试重新安装SDK。
-
问题:测试调用时响应超时。 解决方案:检查网络连接是否稳定,并尝试更新SDK至最新版本。
2.3 Nezip API的调用方法
2.3.1 调用基础语法
调用Nezip API时,开发者需遵循以下基础语法:
# Python示例
import nezip_api
# 初始化API对象
api = nezip_api.NezipAPI(key_id='YOUR_KEY_ID', access_key='YOUR_ACCESS_KEY')
# 调用API接口获取数据
def get_stock_data(stock_code):
response = api.query_stock_data(stock_code)
if response['success']:
return response['data']
else:
return 'Error: ' + response['message']
# 示例调用
stock_data = get_stock_data('000001')
print(stock_data)
在上述代码示例中,开发者首先导入Nezip API模块,然后创建API对象进行初始化。之后,定义一个函数来查询股票数据,并通过调用该函数获取数据。
2.3.2 高级调用技巧与实践
在实际的开发过程中,为了提高调用效率,减少服务器负载,以及优化用户体验,开发者可以采用以下高级技巧:
- 使用异步调用:利用异步编程技术,同时发起多个API调用,提高程序执行效率。
- 缓存机制:对接收到的数据进行本地缓存,以减少重复数据的请求次数。
- 批量处理:在可行的情况下,通过批量调用API接口来减少通信次数。
- 负载均衡:使用多个API服务端点来分散请求负载,避免单点故障。
import asyncio
import nezip_api
async def get_stock_data(stock_code):
api = nezip_api.NezipAPI(key_id='YOUR_KEY_ID', access_key='YOUR_ACCESS_KEY')
response = await api.query_stock_data(stock_code)
if response['success']:
return response['data']
else:
return 'Error: ' + response['message']
async def main():
stock_codes = ['000001', '000002', '000003']
tasks = [get_stock_data(code) for code in stock_codes]
results = await asyncio.gather(*tasks)
for stock_code, result in zip(stock_codes, results):
print(f'{stock_code}: {result}')
if __name__ == '__main__':
asyncio.run(main())
在上面的示例中,我们使用了Python的 asyncio
库来实现异步调用,能够同时处理多个股票代码的查询请求。
2.4 Nezip API的性能优化
2.4.1 性能监控与分析
性能监控和分析是确保API能够高效运行的关键步骤。通过实时监控API的响应时间和吞吐量,开发者可以及时发现潜在的性能瓶颈,并采取相应的优化措施。
- 响应时间监控:记录每个API调用的响应时间,并设置合理的阈值,超出阈值时发出警告。
- 吞吐量监控:统计单位时间内API调用的次数,避免服务过载。
- 错误率分析:分析API调用中出现错误的比例,确定错误类型,并进行问题定位。
graph TD;
A[开始监控] --> B[记录响应时间];
B --> C{响应时间是否合理?};
C -- 是 --> D[记录吞吐量];
D --> E{吞吐量是否合理?};
E -- 是 --> F[记录错误率];
E -- 否 --> G[增加服务器资源];
C -- 否 --> H[优化代码逻辑];
F -- 错误率高 --> I[问题定位与修复];
F -- 错误率正常 --> J[结束监控];
2.4.2 优化策略与实施
根据性能监控和分析的结果,可以采取一系列的优化策略来提高Nezip API的性能:
- 代码逻辑优化:对API接口的实现代码进行重构,提高代码的执行效率。
- 异步处理:将同步API调用改为异步调用,减少等待时间。
- 资源扩展:根据需要增加服务器数量或提升服务器性能,以承载更高的负载。
- 缓存策略:实施有效的数据缓存机制,减少对后端的重复请求。
- 网络优化:优化数据传输协议和压缩方法,降低网络延迟和带宽消耗。
graph LR;
A[监控发现性能瓶颈] --> B[性能分析];
B --> C[代码逻辑分析];
C --> D[异步处理优化];
D --> E[资源扩展策略];
E --> F[缓存策略实施];
F --> G[网络优化措施];
G --> H[性能瓶颈解决];
通过细致的监控、分析和优化,可以确保Nezip API在自动化股票期货交易中的稳定性和高效性,从而为最终用户提供优质的服务体验。
3. Visual Studio项目文件管理
Visual Studio是微软公司开发的一款集成开发环境(IDE),广泛应用于C++、C#、VB.NET等多种编程语言的开发工作。项目文件管理是软件开发中的重要组成部分,良好的项目文件管理可以提高开发效率、保证代码质量以及维护项目的可持续发展。在本章中,我们将详细介绍Visual Studio的项目文件管理功能,以及一些高级管理技巧和优化方法。
3.1 Visual Studio基础使用
3.1.1 创建项目与工程结构
创建新项目是Visual Studio中一个非常基础的操作,也是整个项目开发的起点。在Visual Studio中,可以创建多种类型的项目,包括但不限于控制台应用程序、Windows窗体应用程序、WPF应用程序、类库以及单元测试项目等。
以创建一个C++控制台应用程序为例,操作步骤如下:
- 打开Visual Studio。
- 点击“创建新项目”按钮。
- 在模板列表中选择“C++”语言下的“控制台应用”模板。
- 输入项目名称和位置,选择项目类型(例如Win32控制台应用程序)。
- 点击“创建”按钮,Visual Studio会自动生成项目文件和结构。
项目的默认结构通常包括源代码文件(.cpp)、头文件(.h)、资源文件(.rc)、预编译头文件(.pch)等。Visual Studio提供了直观的解决方案资源管理器(Solution Explorer),可以方便地查看和管理这些文件。
3.1.2 源代码管理与版本控制
源代码管理(也称为版本控制)是项目文件管理的关键组成部分。它允许开发者跟踪和管理源代码的历史更改,从而协调团队工作、支持代码分支和合并策略等。
Visual Studio对多种版本控制系统提供了集成支持,包括但不限于Git、Subversion和TFS(Team Foundation Server)。要使用版本控制,首先需要进行一些初始设置,比如连接到版本控制系统或在本地初始化Git仓库。
以Git为例,可以使用以下步骤来管理版本:
- 打开“团队资源管理器”视图。
- 选择“连接到源代码管理”来连接到远程仓库或“创建本地Git仓库”来初始化本地仓库。
- 使用“提交”按钮来记录更改,可以通过“分支”菜单创建和管理工作分支。
- “同步”和“发布”按钮允许同步本地和远程仓库之间的更改,并且可以将本地更改发布到远程仓库。
3.2 Visual Studio高级项目管理
3.2.1 静态代码分析与质量保证
静态代码分析是检测源代码中错误、漏洞、代码异味(即可能违反代码最佳实践的代码结构)的过程。Visual Studio提供了内置的静态代码分析工具,能够帮助开发者提升代码质量。
要进行静态代码分析,请按照以下步骤操作:
- 在解决方案资源管理器中,右键点击项目,选择“属性”。
- 在打开的属性页面中,选择“代码分析”选项卡。
- 根据需要配置规则集和分析模式。
- 点击“开始分析”按钮,Visual Studio将开始分析过程,并在“错误列表”中显示结果。
分析结果中通常包括各种代码问题和建议,开发者可以根据这些信息修复代码问题。
3.2.2 构建自动化与依赖管理
构建自动化是提高开发效率的重要手段,它允许开发者自动化编译、链接和部署项目的过程。Visual Studio支持构建自动化,并且提供了丰富的选项和工具来配置构建过程。
依赖管理是确保项目能够正确链接到外部库或框架的过程。通过项目属性中的“引用”或“依赖项”配置,开发者可以添加或移除项目依赖的库。
3.3 Visual Studio的性能优化
3.3.1 编译器优化技巧
编译器优化是提高编译速度和运行时性能的重要手段。Visual Studio提供了许多编译器优化选项,开发者可以根据需要进行配置。
要优化编译器设置,请按以下步骤操作:
- 在解决方案资源管理器中,右键点击项目,选择“属性”。
- 选择“配置属性”下的“C/C++”选项卡。
- 在“优化”部分配置优化级别,如优化速度或优化大小。
- 在“代码生成”中配置其他相关选项,例如“启用内联展开”或“忽略特定库”等。
合理配置这些编译器选项可以在保持程序功能不变的前提下,提升程序性能。
3.3.2 项目配置与性能瓶颈诊断
项目配置涉及到项目属性的设置,包括编译选项、链接选项、资源管理等。性能瓶颈诊断通常在项目编译或运行时发现性能问题时执行。Visual Studio提供了强大的性能分析工具,如性能分析器(Performance Profiler)。
通过性能分析器可以:
- 运行性能分析会话来收集性能数据。
- 查看不同性能指标,比如CPU、内存使用情况。
- 使用热图和调用树来识别性能瓶颈。
- 根据分析结果优化代码和资源使用。
3.4 Visual Studio的扩展与插件
3.4.1 常见插件介绍与使用
Visual Studio通过插件和扩展的方式支持额外的功能定制和增强。一些常见的插件提供了代码编辑增强、项目模板、开发工具包等功能。例如,ReSharper、CodeMaid、Visual Assist等插件被许多开发者广泛使用。
要安装和使用这些插件,请按以下步骤操作:
- 打开Visual Studio的“工具”菜单。
- 选择“扩展和更新”来打开管理界面。
- 在“在线”标签页中搜索所需插件。
- 下载并安装插件。
- 安装完成后重启Visual Studio以使插件生效。
安装完毕后,插件会提供相应的工具或功能,帮助提高开发效率。
3.4.2 开发自定义插件的基础
Visual Studio的插件是基于.NET Framework或.NET Core开发的。如果你想要开发自己的插件,需要了解Visual Studio的扩展点(Extension Points)和包(Packages),这些是扩展的基础。
自定义插件开发一般涉及以下步骤:
- 安装Visual Studio扩展开发工作负载。
- 创建一个新的Visual Studio扩展项目。
- 使用VS SDK编写代码,定制用户界面和实现功能。
- 使用“F5”键在Visual Studio实验实例中运行和调试扩展。
- 构建、打包并发布扩展。
通过掌握这些基础知识,你将能够为Visual Studio定制开发和发布自己的扩展插件。
4. 实时股票数据获取与监控
4.3 股票数据的实时分析
实时分析算法与模型
在金融市场中,快速准确的数据分析对于投资者至关重要。实时股票数据的分析旨在对市场动态做出快速反应,以便投资者可以根据最新的市场信息作出交易决策。实现这一目标通常需要复杂的算法和模型,这些算法和模型需要能够在数据流进来的那一刻就进行处理。
首先,我们需要构建一个基于事件驱动的实时分析框架,它可以监听市场数据流,并且在数据更新时自动触发分析任务。常见的实时分析算法包括:
- 移动平均线(Moving Averages) :这是最基础的技术分析工具之一,用于识别价格趋势并预测未来价格动向。
- 相对强弱指数(RSI) :RSI用于衡量市场中买卖双方的力量对比,可以帮助投资者识别资产是否被超买或超卖。
- 布林带(Bollinger Bands) :布林带展示价格与波动性的关系,用以预测价格突破和调整的可能性。
- 指数平滑异同移动平均线(MACD) :MACD是观察市场趋势和动量的常用指标,通过比较不同期限的指数移动平均数来实现。
使用这些指标进行实时分析时,关键是算法的效率。由于交易市场每秒都会产生大量数据点,算法必须足够高效,以便实时地分析这些数据。一般而言,这些算法的实时计算可以通过优化数据结构和减少不必要的计算来实现。
分析结果的可视化实现
分析结果的可视化对于理解复杂数据至关重要,尤其是在交易领域,需要快速识别市场趋势和模式。实时分析的结果可以通过图表、图形、仪表盘等视觉元素来展示,以辅助交易者作出决策。常见的可视化方法包括:
- 蜡烛图(Candlestick Charts) :蜡烛图可以展示股票价格的开盘价、收盘价、最高价和最低价,是最常见的股票价格表示方法。
- 热图(Heat Maps) :热图可以展示不同的资产在不同时间段的性能表现,帮助投资者快速识别市场热点。
- 散点图(Scatter Plots)和线图(Line Charts) :散点图和线图可以展示资产价格随时间的变化趋势,对于观察和分析长期趋势很有帮助。
在实现这些图表时,应该考虑到数据更新的实时性。数据点应该能够快速地反映在图表上,且图表的交互性也非常重要,如缩放、拖动和筛选等操作需要流畅无阻。此外,对于实时监控系统而言,异常值检测和警报功能也是必不可少的,这样当某个指标偏离正常范围时,可以立即通知交易者。
代码示例:使用JavaScript和HTML5 Canvas来实现一个简单的蜡烛图可视化。
// 假定已有股票数据点的数组 stocksData
// 初始化Canvas元素
var canvas = document.getElementById('stockChart');
var ctx = canvas.getContext('2d');
// 设置Canvas的尺寸
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
// 绘制蜡烛图的函数
function drawCandlestick(data, index) {
var x = index * (canvas.width / data.length);
var y = canvas.height - ((data[index].close - data[index].open) * canvas.height / (data[index].high - data[index].low));
ctx.beginPath();
ctx.strokeStyle = 'black';
ctx.moveTo(x, y);
ctx.lineTo(x, canvas.height);
ctx.stroke();
// 绘制蜡烛的实体
var bodyWidth = 40;
var bodyHeight = Math.abs((data[index].close - data[index].open) * canvas.height / (data[index].high - data[index].low));
ctx.fillStyle = data[index].close > data[index].open ? 'green' : 'red';
ctx.fillRect(x - (bodyWidth / 2), y - bodyHeight, bodyWidth, bodyHeight);
// 绘制蜡烛的影线
var wickLength = 10;
ctx.moveTo(x, y - bodyHeight);
ctx.lineTo(x, y - bodyHeight - wickLength);
ctx.moveTo(x, y);
ctx.lineTo(x, y + wickLength);
ctx.stroke();
}
// 循环调用函数绘制蜡烛图
data.forEach(drawCandlestick);
以上示例是用Canvas API来绘制一个简单蜡烛图。在实际应用中,数据会动态更新,并且需要添加更多的交互功能,如缩放、拖动和警报触发等。技术细节包括对不同浏览器的兼容性和性能优化。这个过程需要对前端技术有深入理解,以确保图表能够高效和可靠地更新。
实时分析算法与模型的优化
为了使实时股票数据的分析更加高效,我们不仅需要优化算法和数据结构,还需要考虑如何利用现代计算技术,比如多线程处理、GPU加速以及云计算资源。此外,对于数据处理流程的设计也需要细致考虑,包括数据的分批处理、缓存机制、数据的预处理以及最终结果的存储策略。
在构建实时分析系统时,采用框架和库能够提供强大的支持。例如,使用Node.js可以实现非阻塞I/O和事件循环,进而提高系统的吞吐量。而对于数据处理,可以利用如Apache Kafka这样的消息队列来实现高效的数据流管理。
代码示例:使用Node.js创建一个实时数据流处理模块。
const Kafka = require('node-kafka-stream');
const stream = new Kafka({
'client.id': 'realtime-analysis', // 一个唯一的客户端ID
'metadata.broker.list': 'localhost:9092', // Kafka代理列表
'group.id': 'realtime-analysis-group', // 一个唯一的组ID
});
// 订阅主题 'stock-data'
stream.subscribe('stock-data');
// 处理实时数据流
stream.on('message', (data) => {
// 分析数据
let analysisResult = realTimeDataAnalysisFunction(data);
// 输出或进一步处理分析结果
console.log(analysisResult);
});
stream.connect();
通过上述示例,我们创建了一个实时数据流处理的流程,能够订阅特定主题并实时处理流进的数据。这里的 realTimeDataAnalysisFunction
代表分析函数,它会根据传入的数据点执行相应的分析算法。这仅仅是一个简单的例子,实际应用中需要考虑错误处理、数据序列化、并行处理等更多因素。
随着技术的发展,新的算法和工具也在不断地涌现,为实时股票数据的分析和监控带来了更多的可能性。例如,机器学习算法可以对大量的历史数据进行训练,进而预测股票价格的走势。边缘计算技术则可以将数据处理更接近数据源,减少数据传输延迟,提高分析的时效性。而这些技术的集成和应用,将使得实时股票数据的分析和监控变得更加精准和高效。
5. 股票全推数据订阅与分析
股票全推数据订阅与分析是自动化股票期货交易系统的核心组成部分,它能提供实时的、全面的股票市场信息,对策略制定和决策支持具有决定性意义。本章将深入探讨全推数据订阅基础、高级处理方法、实时处理技术以及全推数据应用的实践与未来趋势。
5.1 股票全推数据订阅基础
全推数据订阅是为投资者提供全市场股票的实时数据更新服务,包括交易价格、交易量等信息。它允许用户根据自己的需求选择特定的股票或板块,实现数据的即时接收。
5.1.1 全推数据概念与订阅流程
全推数据订阅服务允许用户通过简单的设置,即刻接收到涉及订阅股票的所有实时交易数据。这些数据不仅仅是常规的买卖盘数据,还包括了各种可能影响股票价格的实时信息,例如大宗交易、异常波动等。
订阅流程一般包括以下几个步骤: - 选择数据服务提供商 :寻找并选择可以提供全推数据服务的平台。 - 确定订阅策略 :根据投资策略和兴趣点确定需要订阅的股票或板块。 - 配置订阅规则 :设置数据过滤条件,例如价格变动阈值、特定交易量以上等。 - 数据接收与解析 :通过API或数据推送平台接收数据,并进行格式解析。
5.1.2 订阅数据的格式与解析
全推数据通常以JSON或XML格式发布,为了便于机器处理和分析,数据结构需要清晰明了。解析这些数据需要遵循相应的协议和格式定义。例如,JSON格式的股票数据可能包含如下字段:股票代码、名称、最新成交价、成交量等。
{
"stock_code": "600519",
"name": "贵州茅台",
"latest_price": 1768.88,
"volume": 125000,
"date_time": "2023-04-01 10:00:00"
}
5.2 全推数据的高级处理
处理订阅的全推数据是数据订阅服务中的关键环节,它包括数据缓存、存储以及后续的数据分析和挖掘。
5.2.1 数据缓存与存储策略
由于全推数据是持续不断地推送,因此需要一个高效的数据缓存机制来保证数据的实时性和稳定性。可以选择内存缓存如Redis,或者使用高速数据库如MongoDB,甚至是NoSQL数据库如Cassandra。
存储策略需要考虑以下因素: - 数据的持久化 :确保数据不会因系统故障而丢失。 - 数据访问速度 :保证可以快速地进行数据检索和分析。 - 数据规模管理 :能够适应数据量的不断增长。
5.2.2 高级数据分析与挖掘
为了从海量的全推数据中提炼有价值的信息,需要采用高级的数据分析和挖掘技术。例如,使用机器学习算法来预测股票价格走势,或者利用数据挖掘技术发现异常交易行为。
数据分析流程包括: - 数据清洗 :去除数据中的噪声和异常值。 - 特征工程 :选择和构造对分析目标有帮助的数据特征。 - 模型训练 :使用历史数据训练预测模型,如时间序列分析、决策树等。
5.3 全推数据的实时处理
实时处理订阅的全推数据,需要可靠的框架和工具支持,以满足金融市场对低延迟和高准确性的严格要求。
5.3.1 实时处理框架与工具
实时数据处理框架必须能够提供低延迟和高吞吐量的处理能力,常见的框架包括Apache Kafka、Apache Storm、Apache Flink等。这些框架能够将数据流式处理,并支持复杂的事件驱动逻辑。
5.3.2 实时处理场景应用与案例
在实际的交易系统中,实时数据处理常用于盘中实时监控、算法交易等场景。例如,盘中实时监控可以快速识别出异常交易模式,而算法交易则需要根据实时数据不断调整交易策略。
5.4 全推数据应用的实践与思考
全推数据订阅与分析服务的应用范围不仅限于自动化交易,还可以扩展到多方面,包括但不限于金融信息服务、学术研究、市场监控等。
5.4.1 数据订阅服务的商业模式
数据订阅服务的商业模式通常是基于订阅费的,可以是按月、按年收取固定费用,也可以是根据数据使用量收费。此外,还能够通过为用户提供定制化的数据分析报告来增加额外收入。
5.4.2 从实践到创新:数据应用的未来趋势
随着人工智能和大数据技术的发展,全推数据的应用前景无限。未来可能会有更智能的数据分析工具,提供更为精准的预测模型和更丰富的市场洞察。同时,区块链技术的应用也为数据交易和数据安全提供了新的可能性。
简介:在金融投资领域,利用C++实现自动化交易系统"NezipC++",让开发者可以实时获取股票期货数据并进行自动化交易。本文详细介绍了如何使用Nezip API进行股票和期货的数据获取和交易下单,包括接口调用规范、C++项目构建、实时数据获取、全推数据订阅以及自动化交易策略的实现。NezipC++提供了高效的数据处理和存储方案,支持技术指标和算法模型的自动下单,有助于降低人为错误和提高交易效率。