前言:这篇文章是由陈智罡博士于2013年写的博客文章,当时全同态加密研究刚起步,方案非常复杂。陈博士的这篇博客文章,成为了每个进入全同态加密领域同学的必读文章,也为很多学习全同态加密的同学解答了很多学习困惑。今天读起来,会让我们很好的了解当初全同态加密是如何被解决的。
———————————这是一条美丽的分割线——————————————
4、 电路复杂度
前面的方案中大家看到了是按“位”来加密的(即m∈ {0,1}),加密后得到的是一个整数,密文膨胀的很厉害,那么为什么明文不取整数来加密呢?例如取明文m∈Z。我想原因是这样的:每个研究全同态的人们都想过了,但是没有找到一个方案可以把明文按照整数来加密。并不是说没有这种方案,估计只是现在还没有找到。
又有人会问:为什么全同态方案要用电路来描述呢?
首先我们来说说什么叫一个方案是全同态的?如果一个方案能够对密文做任意功能的运算,而且运算结果所得密文是紧凑的,同时Evaluate算法(即运算)是有效地,那么我们就称该方案是全同态的。可以用下式说明:
上式太重要了,我觉得只要把上面的式子牢记在心,那么全同态的概念就装在心里了。“紧凑的”在这里就不说了,论文里有解释,而且也很好理解。正确性当然是必须的。