java加密 密文中含有+号_全同态加密是如何被解决的-5

本文介绍了全同态加密的早期研究,探讨了为何明文不能以整数形式加密以及全同态加密方案用电路描述的原因。重点阐述了如何通过AND、XOR电路实现任意功能的加密运算,并利用解密电路降低噪音,确保计算正确性,最终实现全同态加密的概念。
摘要由CSDN通过智能技术生成

前言:这篇文章是由陈智罡博士于2013年写的博客文章,当时全同态加密研究刚起步,方案非常复杂。陈博士的这篇博客文章,成为了每个进入全同态加密领域同学的必读文章,也为很多学习全同态加密的同学解答了很多学习困惑。今天读起来,会让我们很好的了解当初全同态加密是如何被解决的。

———————————这是一条美丽的分割线——————————————

4、 电路复杂度

前面的方案中大家看到了是按“位”来加密的(即m∈ {0,1}),加密后得到的是一个整数,密文膨胀的很厉害,那么为什么明文不取整数来加密呢?例如取明文m∈Z。我想原因是这样的:每个研究全同态的人们都想过了,但是没有找到一个方案可以把明文按照整数来加密。并不是说没有这种方案,估计只是现在还没有找到。

又有人会问:为什么全同态方案要用电路来描述呢?

首先我们来说说什么叫一个方案是全同态的?如果一个方案能够对密文做任意功能的运算,而且运算结果所得密文是紧凑的,同时Evaluate算法(即运算)是有效地,那么我们就称该方案是全同态的。可以用下式说明:

c2ae20c1f1440b554b0cf11d7cc78257.png

上式太重要了,我觉得只要把上面的式子牢记在心,那么全同态的概念就装在心里了。“紧凑的”在这里就不说了,论文里有解释,而且也很好理解。正确性当然是必须的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值