influxdb无法实现关联表_基于Jmeter的性能压测平台实现

42c3c4b8c60aa30e0a6e57f0fdb59b95.gif

很早就想要一套属于自己的性能压测平台,原因是使用了阿里云的性能测试PTS,就挺羡慕能有一个这样的性能测试平台,但毕竟人家的东西我们高攀不起(要钱的),而且阿里云的性能测试平台是不支持多种协议的(比如我有一个项目要用websocket测试,结果人家就支持http压测)。

  说到开发自己的性能测试平台,肯定想到的是Jmeter,因为开源的性能测试工具没有比它更强大的了,所以第一个想到的是怎么把它变成性能测试平台,很多人首先想到的是通过jenkins结合jmeter,我想那也只能叫调度平台,不能叫性能测试平台。通过对Jmeter和Java快速开发框架的深入了解,我发现做一个自己的性能压测平台是可行的,而且网上也有人正在做。开发的过程肯定是无限的踩坑(开源的东西就这样),相对收获来说应该值的。以下是我针对开源的Java快速开发框架和别人实现的部分成品,再结合JMeterEngine的深入学习,梳理的平台架构:

d2303bcc1263cc69cc91b4fa2dc1bb20.png

  以下是主要的技术选型及说明:

  • 核心框架:Spring Boot 1.5

  • 安全框架:Apache Shiro 1.3

  • 视图框架:Spring MVC 4.3

  • 持久层框架:MyBatis 3.3

  • 定时器:Quartz 2.3

  • 数据库连接池:Druid 1.0 (阿里开源)

  • 日志管理:SLF4J 1.7、Log4j

  • 页面交互:Vue2.x

  • 前端监控:ECharts 3.8

  • 压测内核(即JMeterEngine):Apache JMeter 4.0

  • 脚本调用内核:Apache Commons Exec 1.3

  • 远程执行命令:Ganymed build210

  选用的快速框架是经量级的,而且是方便快速部署的:

  【renren-fast开发框架】,具体可以上网获取:https://www.renren.io/guide/

性能测试平台的项目结构

stress-test

├─doc  项目SQL语句

├─common 公共模块

│  ├─aspect 系统日志

│  ├─exception 异常处理

│  ├─validator 后台校验

│  └─xss XSS过滤

├─config 配置信息

├─modules 功能模块

│  ├─api API接口模块(APP调用)

│  ├─job 定时任务模块

│  ├─oss 文件服务模块

│  ├─sys 权限模块

│  └─test 压测模块

├─RenrenApplication 项目启动类

├──resources

│  ├─mapper SQL对应的XML文件

│  ├─static 第三方库、插件等静态资源

│  ├─views  项目静态页面

│  └─application.yml 环境配置

平台已实现的部分功能

  (1)用例管理:

8f96221b74c04a5f7797fa914f1ce78b.png

  用例管理支持jmx脚本的上传和参数化文件及测试附件的上传,一个用例创建一个目录(脚本、参数文件、附件、测试报告都在同一用例下保存)。删除用例时会自动删除用例下所关联的脚本,并一并删除已同步到各个节点的文件。

  (2)脚本文件管理

  每个脚本具有启动和停止压测线程的功能(具有状态标识),每个参数化文件或附件具有同步到各个节点的功能(同步完成后标识为同步成功)。

ba62cea057ff84c5239f9aefe2590f1d.png

  脚本文件除了启动和停止功能,还能配置是否开启报告生成和是否开户前端监控,监控为echarts图形监控,如下:

214d4acd04a3a6f74e29439ff5b6d8b2.png

  调用脚本进行压测的方法分为两种:

05f91d157402e5067d9a553d24371fb2.png

(3)测试报告管理

  e58e4d9c6adcd1fa15f0ffec9ff6b7fb.png

1f2c03020dd6dc833358da10960c8d34.png

  默认执行脚本过程中,生成了CSV报告,通过【生成报告】按钮,触发将csv报告转换成html DashBoard(这一步也是通过Commons Exec调度jmeter命令完成):

f7bd78e725100870ee92e238cf97294f.png

(4)分布式节点管理

55a3dc3f65e01d024d28ab6dfa837fbe.png

  分布式节点管理通过Ganymed远程执行linux命令,来启动或是停止各节点的Jmeter-server,启动命令格式如下:

//启动节点

String enableResult = ssh2Util.runCommand(

"cd " + slave.getHomeDir() + "/bin/testCases/" + "\n" +

"sh " + "../jmeter-server -Djava.rmi.server.hostname="+slave.getIp());

  如果是禁用节点,就是通过远程执行杀进程的命令:

ssh2Util.runCommand("ps -efww|grep -w 'jmeter-server'|grep -v grep|cut -c 9-15|xargs kill -9");

  这种方式挺方便,省了在多台linux节点机上,手动去连接和启动jmeter(分布节点越多越显得方便快捷)。

  另外跟原来相比,分布式节点管理增加了校准功能,就是为了解决节点因为人为因素停了,而管理端不能及时的作出判断,现在通过校准可以将后台节点的进程状态跟前台同步一次(避免进程异常关闭或错误启动),目前不是自动校准。因为无论是实时监听端口还是定时校准,效率都不是最好的。以后可以尝试在压测过程中添加监听机制,来实时监测节点状态,而非压测时段就通过手动点击校准即可,这样会相对经济一些。

  (5)监控扩展(Grafana+InfluxDB)

  由于我在以前的一篇文章中写过有关Grafana+InfluxDB与Jmeter的监控(关于Jmeter长时间压测的可视化监控报告),可以直接拿过来集成使用。集成的方式是开启Grafana的匿名登录(在defaults.ini中配置),到官网下一个Jmeter的监控视图JSON模板导入,同时以跳转的方式将Grafana嵌入到平台的iframe中。

var URL_IP = parent.location.host;

var URL_PORT = parent.location.port;

window.location = "http://"+URL_IP.replace(":"+URL_PORT,"")+":3000/d/joulMbxmz/apache-jmeter-dashboard?orgId=1";

fbe4a76fbc925adfe45988c8839cc4bd.png

   另外可以将Grafana和InfluxDB及一键启动脚本与性能压测平台一起部署,实现在部署层面上进行集成和无缝对接使用。

  写到这我们的性能压测平台前期部分基本介绍完了,还有些功能未开始开发,比如像阿里云PTS的压测场景配置,这比较复杂,相当于是把脚本的场景设置移到WEB界面上,另外还要结合定时器进行脚本的灵活调度(发起压测、结束压测、持续时间、测试周期等),目前来看还没想好怎么实现。但是可以先实现线程组的在线管理:

  (6)线程组管理

a9b543ab1909762eedb71724fd9869c5.png

  线程组管理的原理也不复杂,就是上传脚本时,通过dom4j递归扫描Jmx脚本(本质上是xml)的节点,获取线程组的配置节点参数,保存入库,然后在界面上修改和管理,改完还可以同步回Jmx脚本(也是通过dom4j对xml进行set配置)。目前实现的管理的线程组类别包括默认的ThreadGroup、jp@gc - Stepping Thread Group、jp@gc - Ultimate Thread Group,这三种已经算最常用的了。线程组管理的目的就是免去简单的线程配置(如并发数配置、线程组禁用)还要线下设置,设置完又要上传,另外脚本的线程组配置在平台界面上也能一目了然,避免又要临时打开Jmeter工具进行查看。

  (7)压测节点监控

0443b2e3d3fa56f58fa568c6f8324c26.png

  既然有了分布式节点管理,那边我们也可以做到对节点的分布式监控,在Influxdb-Grafana的基础上,引入telegraf来实现;我们通过界面上,加入监控开启和停止的按钮,再结合节点上部署的一些批处理命令,来实现一键启动监控代理。

  启动和关闭的核心代码如下:

/**

* 批量切换节点的监控状态

*/

@Override

public void updateMonitorBatchStatus(List slaveIds, Integer monitorStatus) {

String execStr="";

for (Long slaveId : slaveIds) {

StressTestSlaveEntity slave = queryObject(slaveId);

// 本机节点无需远程操作

if ("127.0.0.1".equals(slave.getIp().trim())) {

Runtime r = Runtime.getRuntime();

//执行本地操作系统命令,不关心返回结果,

Process p = null;

try {

if(OS_NAME_LC.startsWith("windows")){

if (StressTestUtils.ENABLE.equals(monitorStatus))

execStr = "cmd.exe /c \""+StressTestUtils.getJmeterHome()+"\\telegraf\\start.cmd\" -a";

else

execStr = "cmd.exe /c taskkill /im telegraf.exe /f";

}else{

if (StressTestUtils.ENABLE.equals(monitorStatus))

execStr = "sh "+StressTestUtils.getJmeterHome()+"/telegraf/startUp.sh "+slave.getSlaveName();

else

execStr = "sh "+StressTestUtils.getJmeterHome()+"/telegraf/stop.sh "+slave.getSlaveName();

}

p = r.exec(execStr);

p.waitFor();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

} finally {

if(null!=p){

p.destroy();

p=null;

}

}

//更新数据库

slave.setMonitorStatus(monitorStatus);

update(slave);

continue;

}

//其他节点需要SSH远程连接

SSH2Utils ssh2Util = new SSH2Utils(slave.getIp(), slave.getUserName(),

slave.getPasswd(), Integer.parseInt(slave.getSshPort()));

// 避免跨系统的问题,远端由于都时linux服务器,则文件分隔符统一为/,不然同步文件会报错。

String telegrafServer = slave.getHomeDir() + "/telegraf/telegraf";

String md5Str = ssh2Util.runCommand("md5sum " + telegrafServer + " | cut -d ' ' -f1");

if (!checkMD5(md5Str)) {

throw new RRException(slave.getSlaveName() + " 监控模块出错!找不到telegraf启动文件!");

}

//如果是开启监控

if (StressTestUtils.ENABLE.equals(monitorStatus)) {

//启动监控

execStr =

"sh " + slave.getHomeDir() + "/telegraf/startUp.sh "

+ slave.getSlaveName()+" "+stressTestUtils.getLocalIp();

}else{

//禁用监控

execStr = "sh " + slave.getHomeDir() + "/telegraf/stop.sh";

}

String enableResult = ssh2Util.runCommand(execStr);

logger.error(enableResult);

if (!enableResult.contains("telegraf")) {

throw new RRException(slave.getSlaveName() + " telegraf执行失败!请先尝试在节点机命令执行");

}

//更新数据库

slave.setMonitorStatus(monitorStatus);

update(slave);

}

}

  从代码我们也可以看出,我们将telegraf启动和配置文件都放置在jmeter节点的根目录下,这样能方便远程SSH调用,同时我们将监控平台的IP和节点名称也发送过去,并更新到telegraf.conf文件中,这样启动的telegraf进程就会将监控数据发回到我们的influxdb,并通过grafana监控到。以下是监控的效果:

ab51ac790f2a0f5cfcf7507391700835.png

  这样我们就实现了对压测机的监控(在测试过程中不对压测机监控是不合理的,特别是CPU、内存、网络IO等,万一出现测试机的性能瓶颈由于不能及时发现就会导致无用功),除了压测机的监控,我们可以由点及面,做出一个压测平台的监控服务平台,对被测服务端也进行监控。

  更正说明:写这篇文章的时候,阿里云的PTS刚刚能支持原生jmeter(但前提是有项目支持你花这钱),也就是能支持websocket的压测,具体使用说明他们也提供了教程:

https://help.aliyun.com/document_detail/93627.html?spm=5176.7946858.1219570.3.4ced572dQgCraE

383d4945512e202f046465a741a95cda.gif 推荐阅读

点击阅读☞Jmeter自动化测试中不可或缺的提升技能,你GET到了吗?

点击阅读☞用 JMeter 做接口测试的优劣浅析

点击阅读☞必备!Jmeter从菜鸟入门到进阶之路

点击阅读☞利用Jmeter做一个简单的性能测试并进行参数化设置

点击阅读☞用Jmeter做分布式测试的一些技术点……

上文内容不用于商业目的,如涉及知识产权问题,请联系小编(021-64471599-8017)。

5c7261005fcd221e63b5ae084bb58ed8.gifc5859b0a31be6c781396f673cce9304d.gif 9d7a47dd395f1c9c3c58ffce686dc04a.png 爱我请给我好看! c5859b0a31be6c781396f673cce9304d.gif
JMeter是一种常用的性能测试工具,它可以帮助开发人员评估应用程序或网站在不同负载下的性能现。对于性能压测,你可以使用JMeter来模拟多个用户同时访问系统,并收集各项指标,如响应时间、吞吐量和错误率等。通过这些指标,你可以评估系统在不同负载条件下的稳定性和性能现。 为了进行JMeter性能压测,你可以按照以下步骤: 1. 安装JMeter:首先,你需要从官方网站下载并安装JMeter。 2. 创建测试计划:打开JMeter,并创建一个新的测试计划。在测试计划中,你可以添加线程组、定时器、取样器、监听器等组件,以设置并收集所需的压测数据。 3. 配置线程组:在线程组中,你可以设置并发用户数、循环次数、Ramp-Up时间等参数,以模拟真实用户的访问行为。 4. 添加取样器:取样器用于模拟用户发送请求,并收集服务器的响应数据。你可以根据需要选择合适的取样器,如HTTP请求、FTP请求等。 5. 配置监听器:监听器用于收集和显示压测结果。你可以选择适当的监听器,如查看结果树、聚合报告、图形结果等,来监控系统的性能指标。 6. 运行测试计划:在JMeter中,你可以点击“运行”按钮来执行测试计划。在执行过程中,JMeter会模拟多个并发用户发送请求,并记录和分析服务器的响应数据。 7. 分析测试结果:执行完测试计划后,你可以使用JMeter提供的各种报和图来分析性能测试结果。这些结果可以帮助你评估系统的性能瓶颈和优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值