一、什么是爬虫
爬虫:爬虫的作用就是从互联网上抓取对我们有价值的信息。他的本质,是一段程序,是一段自动抓取互联网信息的程序。
Python 爬虫架构主要由调度器、URL管理器、网页下载器、网页解析器、应用程序五个部分组成。
调度器:
调度器主要负责调度URL管理器、下载器、解析器之间的协调,作用相当于电脑的CPU
URL管理器:
url管理器包括已经抓取和还在等待爬取的url地址,防止重复和循环抓取url.实现url管理器主要有三种方式,方式1内存,方式2数据库,方式3缓存数据。
网页下载器:
下载网页要通过传入一个url地址来进行,将网页转换成一个字符串,网页下载器有urllib2(Python官方基础模块)包括需要登录、代理、和cookie,requests(第三方包)
网页解析器:
将一个网页字符串进行解析,可以按照我们的要求来提取出我们有用的信息,也可以根据DOM树的解析方式来解析。网页解析器有正则表达式(直观,将网页转成字符串通过模糊匹配的方式来提取有价值的信息,当文档比较复杂的时候,该方法提取数据的时候就会非常的困难)、html.parser(Python自带的)、beautifulsoup(第三方插件,可以使用Python自带的html.parser进行解析,也可以使用lxml进行解析,相对于其他几种来说要强大一些)、lxml(第三方插件,可以解析 xml 和 HTML),html.parser 和 beautifulsoup 以及 lxml 都是以 DOM 树的方式进行解析的。
应用程序:
从网页中提取的有用数据组成的一个应用。
下面用一个图来解释一下调度器是如何协调工作的:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
importcookielib
importurllib2
url ="http://www.baidu.com"
response1 = urllib2.urlopen(url)
print"第一种方法"
#获取状态码,200表示成功
printresponse1.getcode()
#获取网页内容的长度
printlen(response1.read())
print"第二种方法"
request = urllib2.Request(url)
#模拟Mozilla浏览器进行爬虫
request.add_header("user-agent","Mozilla/5.0")
response2 = urllib2.urlopen(request)
printresponse2.getcode()
printlen(response2.read())
print"第三种方法"
cookie = cookielib.CookieJar()
#加入urllib2处理cookie的能力
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
urllib2.install_opener(opener)
response3 = urllib2.urlopen(url)
printresponse3.getcode()
printlen(response3.read())
printcookie
Beautiful Soup: Python 的第三方插件用来提取 xml 和 HTML 中的数据,官网地址https://www.crummy.com/software/BeautifulSoup/
1、安装 Beautiful Soup
打开 cmd(命令提示符),进入到 Python(Python2.7版本)安装目录中的 scripts 下,输入 dir 查看是否有 pip.exe, 如果用就可以使用 Python 自带的 pip 命令进行安装,输入以下命令进行安装即可:
pipinstallbeautifulsoup4
2、测试是否安装成功
编写一个 Python 文件,输入:
import bs4
print bs4
运行该文件,如果能够正常输出则安装成功。
#!/usr/bin/python
# -*- coding: UTF-8 -*-
importre
frombs4importBeautifulSoup
html_doc ="""
The Dormouse's storyThe Dormouse's story
Once upon a time there were three little sisters; and their names were
Lacie and
and they lived at the bottom of a well.
...
"""
#创建一个BeautifulSoup解析对象
soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8")
#获取所有的链接
links = soup.find_all('a')
print"所有的链接"
forlinkinlinks:
printlink.name,link['href'],link.get_text()
print"获取特定的URL地址"
link_node = soup.find('a',href="http://example.com/elsie")
printlink_node.name,link_node['href'],link_node['class'],link_node.get_text()
print"正则表达式匹配"
link_node = soup.find('a',href=re.compile(r"ti"))
printlink_node.name,link_node['href'],link_node['class'],link_node.get_text()
print"获取P段落的文字"
p_node = soup.find('p',class_='story')
printp_node.name,p_node['class'],p_node.get_text()