点击蓝字关注我们
汉 诺 塔
在印度有一个古老的传说:在世界中心贝拿勒斯的圣庙里,一块黄铜板上插着三根宝石柱。印度教的主神梵天在创造世界的时候,在其中一根柱子上从下到上地穿好了由大到小的64片金盘,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣按照下面的法则移动这些金盘:一次只移动一个金盘,不管在哪根柱子上,小金盘必须在大金盘上面。僧侣们预言,当所有的金盘都从梵天穿好的那根柱子移到另外一根柱子上时,世界将会在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽,世界末日随之到来!
你是否相信世界末日真的会到来呢?
主讲 | 张作卿 审核 | 崔丹苗 剪辑 | 冯雨璇
1
汉诺塔游戏规则
1、有三根相邻的柱子,标号为A,B,C。
2、A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘。
3、现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方。
2
运用递归法解汉诺塔
为了更好的理解汉诺塔原理,这里要引入一个叫做递归的方法。假设我要移动7个环的汉诺塔,我将分为3步,第一步将最上面6个环移动到中间柱,第二步把第七个环放在右边柱,第3步再将中间柱的6环移动到右边柱。有人会问:第二部简单,但是第1第3部分又成了新的问题。我们一起想一想,要将上面6个环移动到中间柱,是否也可以分为3步走?最上面5环先放在右边柱子,第6环放置中间柱,最后将右边5个环移动到中间柱,这样就完成了6个环的移动。现在,我们的问题由移动7个环的操作转化为5个环的操作。依据该原理,层层递推,即可将原问题移动n转化为解决移动n -2、n -3… … 3、2,直到移动1个盘的操作,而移动一个盘的操作是可以直接完成的。而这种由繁化简,用简单的问题和已知的操作运算来解决复杂问题的方法,就是递归法。
而且现在可以计算得到每次移动最少需要几步。如需要移动7个环,步数=2次移动6环的步数加1。移动6个环,步数=2次移动5环的步数加1。移动n个环等于2*(n-1)个环移动的次数再加1。由于1 个的时候是1次,结果n个的时候为(2的n次方减1)次。也就是说,n=64的时候是(2的64次方减1)次。
因此,如果移动一个圆环需要1秒的话。请问移动完成64个圆环需要多少年?
那时世界末日会来到吗?
课后小问题
1 | 移动8个圆环的汉诺塔,最少需要几步? |
2 | 需要移动圆环的个数与放置第一个圆环的位置有怎样的关系? |