glass数据集_数据分享|GLASS产品植被覆盖度FVC

GLASS FVC产品利用机器学习算法(如GRNN, BPNN, SVR, MARS)基于MODIS和AVHRR数据进行遥感反演。该算法经过广泛验证,提供全球0.05°分辨率的植被覆盖度数据,并在多个科研项目中得到应用。产品可通过中国国家地球系统科学数据中心等平台免费下载,受到全球用户的广泛认可。" 93101039,5713818,Markdown编辑器使用指南,"['Markdown', '编辑器', '代码高亮', '数学公式', '图表']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字 关注我们

1

遥感反演算法

GLASS FVC产品算法基于机器学习方法,使用了从全球分布式高空间分辨率卫星数据生成的训练样本。最初,用于MODIS数据的GLASS FVC乘积算法是使用通用回归神经网络(GRNN)方法,训练样本数据Thematic Mapper(TM)和Enhanced Thematic Mapper plus(ETM +)数据生成的。但是,在生成长期全球GLASS FVC产品的过程中,发现GRNNs方法的计算效率并不令人满意。因此,评估了四种机器学习方法,包括反向传播神经网络(BPNN),GRNN,支持向量回归(SVR)和多元自适应回归样条(MARS)。

    还开发了用于AVHRR数据的GLASS FVC算法,以与GLASS MODIS FVC产品配合使用。它基于GLASS MODIS FVC产品,可从AVHRR和MODIS数据实现FVC估计的连续性。

    使用高分辨率卫星数据和地面测量的估计值进行了广泛的验证实验。最近总结了算法的详细信息和验证结果

在全球高空间分辨率植被覆盖度样本数据集建设的基础上,比较不同机器学习算法的效果(包括广义回归神经网络,后向传播神经网络,支持向量机,多元自适应样条回归),完成基于MODIS数据的FVC产品算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值