平面图形的认识(一)
——人教版六年级下册第六单元《图形与几何》
生态数学工作室 李继红
过程:
1.同学们大家好!这节课我们来整理和复习图形的认识与测量一
首先我们来一起来回忆一下,我们学过哪些平面图形和立体图形?你能对学过的图形进行分类吗?
下面大家用自己的方法来总结我们学过的平面图形和立体图形吧。时间2分钟。
下面我们来看一看同学们总结的知识点吧。
(出示学生的作品)
2.那我们学过的平面图形哪些呢?你能说说吗?
我们学过的图形分为平面图形和立体图形。平面图形中我们学过三角形、四边形、圆,立体图形我们学过长方体正方体,圆柱和圆锥。
三角形可以按边分,也可以按角来分。按边分可以分为一般三角形和等腰三角形,在等腰三角形中还有3边都相等的等边三角形。按角分可以分为锐角三角形,钝角三角形,直角三角形。
四边形可以分为一般四边形,梯形和平行四边形。梯形有两种特殊的梯形:直角梯形和等腰梯形。平行四边形中特殊的是长方形,长方形中特殊的是正方形。
立体图形中我们学过了长方体,长方体中特殊的是正方体。还有圆柱和圆锥。
4.这是我们在小学阶段学过的平面图形和立体图形。
逐步出示以下PPT:
5.下面我们对组成平面图形的基本要素进行梳理。我们学过直线,射线和线段。它们有什么联系和区别呢?除此之外,同一平面内两条直线有哪几种位置关系呢?下面大家通过这个表格进行整理和复习。
首先我们来看直线。直线有什么特点呢?直线没有端点,可以两端无限延长,因此无法度量;射线只有一个端点,另一端可以无限延长,因此无法度量;线段有直线里的一个部分,有两个端点,因此可以度量;
我们再来看两条线之间的关系。在同一平面内,有两种位置关系,相交和平行。当两条直线相交成直角时就是互相垂直;在同一平面内当两条直线永远不相交的时候,我们就说这两条直线互相平行。(位置关系是不是相交和平行,其中相交中比较特殊的是相交成直角,就是垂直?)
逐步出示以下表格:
6.下面我们来复习一下,我们学过哪些角呢?我们来通过这个表格来进行整理。想一想每个角的图示是怎样的?它们的度数范围是怎样的?
我们先来说说锐角。锐角都是大于0度而小于90度的,直角通常用直角符号来标注,直角是90度。钝角是这个样子的,都是大于90度小于180度,平角就像一条直线,中间有一个角是平角的顶点(中间有一个点是平角的顶点),平角都是180度。平角里有几个直角呢?是的有两个直角。周角长成这个样子,周角有360度。
大家想一想,在放大镜下看角,它的大小会变化吗?
对,角的两边是射线 ,可以无限延长,角的大小取决于两条射线叉开的大小 ,因此用放大镜看角,不会改变两条射线叉开的大小,是不会改变角的大小。
7.下面我们梳理一下有关三角形的知识。有关三角形,你都知道些什么呢?
下面是一个三角形,我们知道三角形有三条边,三个角和三个顶点。由3条线段首尾相连围成的图形叫三角形。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。这条对边叫三角形的底。想一想,一个三角形有几条高呢?大家知道,三角形有三个顶点,每个顶点都可以向它的对边作垂线,因此一个三角形有三条高。
我们可以根据三角形的特征对三角形进行分类。既可以按边分,也可以按角分。
我们可以借助集合圈的方式,将各类三角形之间的关系表达得更清晰。
如按边分:普通的三角形中有两条边相等的三角形,也叫等腰三角形,相等的两条边就是三角形的腰,在等腰三角形中更特殊的有三条边相等的三角形(也叫等边三角形),
按角边:如果三角形的三个角都是锐角,这个三角形就是锐角三角形;如果有一个角是直角,这个三角形就是直角三角形;如果有一个角是钝角,这个三角形就是钝角三角形;这三类三角形不会交叉,是并列关系。
关于三角形,我们还研究过它的内角,无论是哪一种三角形,它的内角和都是180°,除此之外,我们还研究过三角形三条边长度之间的关系。在一个三角形中,任意两边之和都大于第三边。
8.下面我们来根据三角形的知识来解决一下下面的问题吧。
第一个三角形:因为三角形的内角和是180度,所以第三个角的度数是180°-70°-40°=70度。我们可以知道在这个三角形中有两个角的度数都是70度,这个三角形就是等腰三角形,这两个角称为等腰三角形的底角,40度的这个角称为等腰三角形的顶角。
第二个三角形是个直角三角形,其中有一个角是直角,因此,其余两个角的和是90度,要求的角是90°-55°=35°。
最后一个三角形是一个钝角三角形。我们可以先求出红色钝角的度数:180°-40°=140度。然后再用180°-15°-140°=25度。
9.下面我们来动动脑筋思考一下下面这道题
一个三角形的三个内角互不相等,最小的内角是45度。这个三角形按角分类属于()三角形。
我们来分析一下,因为三个内角互不相等,假设三个角分别是角1最小,角2次之,角3最大,因为题目中说最小的内角是45度,那么角1就是45度了,可知第二大的角2一定大于45度,那么角1+角2的和一定大于90度,因为三角形三个内角之和是180度,所以角3一定小于90度。这样看来,三个角都是锐角,所以这个三角形是锐角三角形。
下面我们来看一看下面有长度为3厘米,4厘米,5厘米,6厘米的小棒各一根,哪三根小棒可以围成一个三角形?
10、下面我们来复习平行四边形的知识。关于平行四边形,你知道些什么?
平行四边形的对边互相平行,而且对边也相等。我们称两组对边分别平行的 四边形叫做平行四边形。从平行四边形的一条边上的一个点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
我们可以用集合圈来表示平行四边形、长方形和正方形之间的关系。(感觉衔接)长方形是特殊的平行四边形,特殊就特殊在长方形的四个角都是直角。而正方形是特殊的长方形,特殊在正方形的四条边都相等。因此我们说正方形是特殊的长方形,长方形是特殊的平行四边形。
11.下面我们来复习有关梯形的知识。只有一组对边平行的四边形,叫做梯形。梯形中也有特殊的梯形。两腰相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形。
刚才我们复习的各种四边形的特征,我们可以用这样的一个集合圈来表示各种四边形的关系。
从这个图中我们可以看出最大的圈代表着四边形大家庭。这个大家族中有两类比较特殊的四边形,一类是平行四边形家族,另一类是梯形家族。平行四边形中比较特殊的是长方形,长方形中比较特殊的是正方形,而梯形中有两类并列的特殊梯形,一类是等腰梯形,一类是直角梯形。
12.下面我们来做一个选择,将一个长方形框架拉成一个平行四边形,与长方形相比,什么变了,什么没变呢?请大家自己读题进行选择。我们来看一看,当把一个长方形的框架拉成一个平行四边形的时候,这个长方形的四条边的长度发生变化了吗?的确,它们的长度并没有发生变化,只是边与边之间的位置关系发生了变化。因此将长方形拉成平行四边形的过程,周长没有发生变化。面积呢?我们来看这是长方形的面积,这是平行四边形的面积。由于平行四边形的面积等于底乘高,从图中我们明显可以看到平行四边形的高小于长方形的宽,因此在拉动的过程中,面积是变化的。所以在四个选项中,只有C选项是正确的。周长不变,面积变了,而且是变小了,因为拉动的过程中高越来越小了。
13.最后,我们来复习有关圆的知识。
现在同学们看到的是用圆规画出的一个圆。用圆规画圆时,针尖所在的点叫圆心,一般用字母O表示,连结圆心到圆上任意一点的线段叫半径,一般用字母r表示,半径的长度就是圆规两个脚之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。我们都知道,在同一个圆里,直径是半径的2倍,半径是直径的1/2。其实,对于一个圆来说,最核心的要素是圆心和半径。圆心决定了圆的位置,半径决定了圆的大小。我国古代的《墨经》中简明扼要地提出:圆,一中同长也。这里的一中就是确定圆位置的圆心,而同长则是指圆中无数条的半径都相等。
14.下面,请同学们运用我们所学的知识来判断一下。(做成PPT,一题做一个图)
(1)大于90度的角就是钝角。
(2)两条直线相交组成的4个角中如果有一个角是直角,那么其他3个角也是直角。
(3)任何两个等底等高的梯形都能拼成一个平行四边形。
钝角是大于90度小于180度的角,大于180度的角就不是钝角了。所以这句话是错的。
请同学们看图,当两条直线相交组成的4个角中有一个角是直角,那么与之相邻的角就是180°-90°=90度。因此其余几个角依此类推都应该是90度,也就是说其中一个角是直角,其他三个角也一定是直角。
第三题中我们拿两个等底等高的梯形,是不能拼成一个平行四边形的。那么只有两个完全相同的梯形才可以拼成一个平行四边形。
15.同学们,我们这节课主要整理和复习了平面图形的特征,下节课我们重点复习平面图形的测量.同学们再见。