猎豹追击野兔matlab建模问题,ARIMA建模遇到的问题

本文对比了MATLAB中使用arima函数和garchfit函数建立ARIMA模型的方法。arima适用于常规的时间序列预测,而garchfit则专用于处理带有条件异方差的金融数据。通过实例演示了两者在实际应用中的不同之处和适用场景。
摘要由CSDN通过智能技术生成

請問建立ARIMA model時 文中使用

spec= garchset('R',i,'M',j,'Display','off'); %指定模型的结构

[coeffX,errorsX,LLFX] = garchfit(spec,da); %拟合参数

我看 Matlab官網之範例,為使用 arima function,程式碼如下:

Forecast the daily NASDAQ Composite Index over a 500-day horizon.

Load the NASDAQ data included with the toolbox, and extract the first 1500 observations.

load Data_EquityIdx

nasdaq = Dataset.NASDAQ(1:1500);

Fit an ARIMA(1,1,1) model to the data.

nasdaqModel = arima(1,1,1);

nasdaqFit = estimate(nasdaqModel,nasdaq);

Forecast the Composite Index for 500 days using the fitted model. Use the observed data as presample data.

[Y,YMSE] = forecast(nasdaqFit,500,'Y0',nasdaq);

Plot the forecasts and 95% forecast intervals.

lower = Y - 1.96*sqrt(YMSE);

upper = Y + 1.96*sqrt(YMSE);

figure

plot(nasdaq,'Color',[.7,.7,.7]);

hold on

h1 = plot(1501:2000,lower,'r:','LineWidth',2);

plot(1501:2000,upper,'r:','LineWidth',2)

h2 = plot(1501:2000,Y,'k','LineWidth',2);

legend([h1 h2],'95% Interval','Forecast',...

'Location','NorthWest')

title('NASDAQ Composite Index Forecast')

hold off

請問 使用arima 及 garchfit 建立 arimal model有何不同?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值