故事背景:
德国数学家施瓦尔兹(1843—1921)第一个用完全初等的方法对下面命题给出了一个漂亮的证明。在锐角三角形 ABC 中,若 D、E、F 分别是三条高 AD、BE、CF 的垂足,则在三角形 ABC 的所有内接三角形中,以垂足为顶点的三角形 DEF 的周长最短。

模型证明
在锐角三角形中,D,E,F分别为三边上的动点,三角形DEF周长最小值如何求解?

1、可以利用线段和差最值中角内一定两动来处理,把D点当作定点来处理,先求定点D下的三角形DEF周长最小。
2、分别做D关于线段AB与AC的对称点;D`和D`1此时D`D`1为周长最小值


3、连接CD`与CD`1 ,由对称的性质可以得出三角形CD`D`11为等腰三角形,且∠D`CD`1 为∠ACB的2倍,所以三角形CD`D`1 形状固定三角形,当CD`最小时周长最小,即CD最小;
4、连接CD`与CD`1,由对称的性质可以得出三角形CD`D`1为等腰三角形,且∠ D`CD`1为∠ACB的2倍,所以三角形CD`D`1形状固定三角形,当CD`最小时周长最小,即CD最小;

5、 当CD⊥AB时,CD最小。

6、连接BE与AF,若把F,E分别当作定点构造可得垂直时E,F为也为垂足时满足,所以最小值为三垂足连线。
模型练习
1.如图,点D是△ABC中AB边上的一个动点,点D关于AC,BC对称点分别是点E和点F,∠A=45°,∠B=75°,AC=8,则EF的最小值是( )
A.4 B.8 C.4 D.4
2.
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小

【解答】
解:(1)如图1,取AB的中点O,连结OD,OC,
∵Rt△ABD和Rt△ABC的斜边为AB,
∴OD=½AB,OC=½AB,
∴OA=OB=OC=OD,
∴A、B、C、D四个点在同一个圆上.
(2)如图2,连结DF,
∵点D、P关于AB对称,
∴∠1=∠2,
∵AD⊥BC于点D,CF⊥AB于点F,
∴∠2+∠3=90°,∠4+∠BCE=90°,BE⊥AC,点A、C、D、F四点共圆,
∴点B、F、E、C四点共圆,∠3=∠4,
∴∠2=∠BCE,∠BFE+∠BCE=180°,
∴∠2+∠BFE=180°,
∴∠1+∠BFE=180°,
∴点P、F、E三点在一条直线上.
(3)如图3,作点D关于AB的对称点G,作点D关于AC的对称点H,连接GF,HE,则DF=GF,DE=HE,
∴当点G,F,E,H在同一直线上时,GF+FE+EH=GH(最短),
此时,DF+FE+DE最短,即△DEF的周长有最小值,
由轴对称的性质,可得∠GAH=2∠BAC=60°,AG=AD=AH,
∴△AGH是等边三角形,
∴△DEF的周长最小值=GH=AD,
∵当AD⊥BC时,AD有最小值,
∴当AD⊥BC时,△DEF的周长有最小值,
连接BE,




温馨提示
“知识“无价,老师作为“知识“的传播者,有责任和义务让更多同学提升自己,也是我的初衷。初中数学压轴公众号除了中考数学必备题型、知识点、特殊题型内容的讲解,还有一些关于亲子教育、家庭教育等内容。学习和教育是相辅相成的,学习文化知识只是人生历程的一部分而已,个人教育更是贯穿人的一生。
———姜姜老师
希望本文对你有所帮助,请持续关注后续更新的精彩内容!
欢迎私信留言,领取“中考知识考点资料大礼包”

更多精彩······
姜姜老师:初中数学几何最值“降龙十八掌”合集——1-6讲
姜姜老师:初中几何最值研究模型合集“降龙十八掌”——7-12讲
中考典型题型:初中几何最值模型17——“胡不归”
「中考考点」姜姜老师讲解:初中几何最值模型18——“阿氏圆”