三角形一点到三边距离最小_姜姜老师:(补充)几何最值模型——施瓦尔兹三角形...

故事背景:

德国数学家施瓦尔兹(1843—1921)第一个用完全初等的方法对下面命题给出了一个漂亮的证明。在锐角三角形 ABC 中,若 D、E、F 分别是三条高 AD、BE、CF 的垂足,则在三角形 ABC 的所有内接三角形中,以垂足为顶点的三角形 DEF 的周长最短。

e95a3b1640f0e345059f318459fe27e6.png

模型证明

在锐角三角形中,D,E,F分别为三边上的动点,三角形DEF周长最小值如何求解?

544edcd124f60387ef65917e7c8ca78e.png

1、可以利用线段和差最值中角内一定两动来处理,把D点当作定点来处理,先求定点D下的三角形DEF周长最小。

2、分别做D关于线段AB与AC的对称点;D`和D`1此时D`D`1为周长最小值

48db0cbd1e3b17200a329a9fcdb04477.png
dedd5d4880c601f23b65421aaceda028.png

3、连接CD`与CD`1 ,由对称的性质可以得出三角形CD`D`11为等腰三角形,且∠D`CD`1 为∠ACB的2倍,所以三角形CD`D`1 形状固定三角形,当CD`最小时周长最小,即CD最小;

4、连接CD`与CD`1,由对称的性质可以得出三角形CD`D`1为等腰三角形,且∠ D`CD`1为∠ACB的2倍,所以三角形CD`D`1形状固定三角形,当CD`最小时周长最小,即CD最小;

a1a23ed295d49e7297ca0462259b93cb.png

5、 当CD⊥AB时,CD最小。

711142a26fa4dd666cef83c17de1e466.png

6、连接BE与AF,若把F,E分别当作定点构造可得垂直时E,F为也为垂足时满足,所以最小值为三垂足连线。

模型练习

1.如图,点D是△ABC中AB边上的一个动点,点D关于AC,BC对称点分别是点E和点F,∠A=45°,∠B=75°,AC=8,则EF的最小值是(  )

A.4 B.8 C.4 D.4

2.

(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,求证:A、B、C、D四个点在同一个圆上.

(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.求证:点P、F、E三点在一条直线上.

(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小

1e78f2c251b3eed8bfc971d191155cf1.png

【解答】

解:(1)如图1,取AB的中点O,连结OD,OC,

∵Rt△ABD和Rt△ABC的斜边为AB,

∴OD=½AB,OC=½AB,

∴OA=OB=OC=OD,

∴A、B、C、D四个点在同一个圆上.

(2)如图2,连结DF,

∵点D、P关于AB对称,

∴∠1=∠2,

∵AD⊥BC于点D,CF⊥AB于点F,

∴∠2+∠3=90°,∠4+∠BCE=90°,BE⊥AC,点A、C、D、F四点共圆,

∴点B、F、E、C四点共圆,∠3=∠4,

∴∠2=∠BCE,∠BFE+∠BCE=180°,

∴∠2+∠BFE=180°,

∴∠1+∠BFE=180°,

∴点P、F、E三点在一条直线上.

(3)如图3,作点D关于AB的对称点G,作点D关于AC的对称点H,连接GF,HE,则DF=GF,DE=HE,

∴当点G,F,E,H在同一直线上时,GF+FE+EH=GH(最短),

此时,DF+FE+DE最短,即△DEF的周长有最小值,

由轴对称的性质,可得∠GAH=2∠BAC=60°,AG=AD=AH,

∴△AGH是等边三角形,

∴△DEF的周长最小值=GH=AD,

∵当AD⊥BC时,AD有最小值,

∴当AD⊥BC时,△DEF的周长有最小值,

连接BE,

15805f74b011dba4ae850fe96202a779.png
8792e050c0dfca1f863fbd656806046d.png
b3ad7a74ef48a67a7fdc4862566c98ce.png
fa90ec34f87e73df001068ca9dcb15dc.png

温馨提示

“知识“无价,老师作为“知识“的传播者,有责任和义务让更多同学提升自己,也是我的初衷。初中数学压轴公众号除了中考数学必备题型、知识点、特殊题型内容的讲解,还有一些关于亲子教育、家庭教育等内容。学习和教育是相辅相成的,学习文化知识只是人生历程的一部分而已,个人教育更是贯穿人的一生。

———姜姜老师

希望本文对你有所帮助,请持续关注后续更新的精彩内容!

欢迎私信留言,领取“中考知识考点资料大礼包”

a0adbff7c337bdb4d92a52e29bae5cad.png

更多精彩······

姜姜老师:初中数学几何最值“降龙十八掌”合集——1-6讲

姜姜老师:初中几何最值研究模型合集“降龙十八掌”——7-12讲

中考典型题型:初中几何最值模型17——“胡不归”

「中考考点」姜姜老师讲解:初中几何最值模型18——“阿氏圆”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值