bst java_BST(二叉搜索树) Java 实现解析

1.二叉搜索树的定义:一颗树的所有左子树都比根小,所有右子树都比根大,成为二叉搜索树。

2.该BST树实现了9个重要方法,分别是关键字查找,插入,删除,删除节点后续节点查找,前序遍历,中序遍历,后序遍历,获取最大节点,获取最小节点。

3.以下是Java的代码实现:

//定义Node类,拥有元素值,节点名称,左孩子节点,右孩子节点,4个成员变量。

class Node {

int element;

String name;

Node leftChild;

Node rightChild;

public Node(int element, String name) {

this.element = element;

this.name = name;

}

}

public class BinSearchTreeDemo {

public Node root;

//查找节点

//方法思路:从根开始找起,如果比根小,就查找左孩子,如果比根大,就查找右孩子,如果相等,则返回该节点。

public Node find(int key){

if(root==null){

System.out.println("The tree is empty...");

return null;

}

Node current=root;

while (current.element!=key){

if(current.element>key){

current=current.leftChild;

}else{

current=current.rightChild;

}

if(current==null){

return null;

}

}

return current;

}

//插入节点

//方法思路:从根节点开始遍历,如果比根小,则继续查找左孩子,如果比根大,则继续查找右孩子,一直查到某节点左孩子或者右孩子为null,则在该节点后继插入节点。

//注意:被插入的元素在树中一定是叶子节点

public boolean insert(Node node){

if(root==null){

root=node;

return true;

}

Node current=root;

if(find(node.element)!=null){

System.out.println("不允许出现重复节点...");

return false;

}

while (current!=null){

if(current.element>node.element){

if(current.leftChild==null){

current.leftChild=node;

return true;

}

current=current.leftChild;

}else{

if(current.rightChild==null){

current.rightChild=node;

return true;

}

current=current.rightChild;

}

}

return false;

}

//前序遍历(根左右的)

public void preOrder_iterator(Node node){

System.out.println(node.element+" ");

if(node.leftChild!=null){

preOrder_iterator(node.leftChild);

}

if(node.rightChild!=null){

preOrder_iterator(node.rightChild);

}

}

//中序遍历(左根右)

public void inOrder_iterator(Node node){

if(node.leftChild!=null){

inOrder_iterator(node.leftChild);

}

System.out.println(node.element+" ");

if(node.rightChild!=null){

inOrder_iterator(node.rightChild);

}

}

//后序遍历(左右根)

public void postOrder_iterator(Node node){

if(node.leftChild!=null){

postOrder_iterator(node.leftChild);

}

if(node.rightChild!=null){

postOrder_iterator(node.rightChild);

}

System.out.println(node.element+" ");

}

//获取树中最小节点

public Node getMinNode(Node node){

if(find(node.element)==null){

System.out.println("This node does not exist...");

return null;

}

Node current=node.leftChild;

while (current!=null){

current=current.leftChild;

}

return current;

}

//获取树中最大节点

public Node getMaxNode(Node node){

if(find(node.element)==null){

System.out.println("This node does not exist...");

return null;

}

Node current=node.rightChild;

while (current!=null){

current=current.rightChild;

}

return current;

}

//删除节点

//方法思路:

//1.首先找到删除节点和该节点对应的父亲节点,分别用target变量和targetParent变量保存,并且利用一个布尔变量保存删除的节点是父亲的左孩子还是右孩子,左孩子则为true,右孩子则为

// false

//2.接下来进行节点删除,删除需要分为三种情况,第一种是删除的是叶子节点,该情况是如果删除的是父亲的左孩子,则直接将父亲的leftChild设为target的左孩子,,如果删除的是右孩子,则 // 直接将父亲的rightChild设为target的左孩子,即为null;第二种情况是删除的节点带有一个孩子节点,该节点可以是左孩子,也可以是右孩子,需要分开处理,如果删除的节点本身是左子树 // ,并且带有左孩子,则将targetParent的左孩子指向target的左孩子,如果带有右孩子,则将targetParent的左孩子指向target的右孩子;如果删除的节点本身是右子树,并且带有左孩子 // ,则将targetParent的右孩子指向target的左孩子,否则指向右孩子。第三种情况是删除的是带有两个孩子的节点,这种情况稍微复杂,我们单独说明

//3.带有两个孩子的节点删除情况分析:该方法伴有一个getFollwingNode的方法,目的是为了捕获删除节点的后续节点,思路如下,

// ①.先找到删除节点的右子树节点,调用getFollowingNode方法可以找到删除节点的右子树中的最左边的节点,也就是最小节点,并返回该最小节点,此时调整该右子树的结构,将返回节点的 // 父节点指向返回节点的右子树(如果存在的话,左子树一定是不存在的);

// ②.此时将删除节点的父节点指向该返回的节点(注意左右情况),然后将返回节点的左指针指向删除节点的左孩子,右指针指向删除节点的右孩子,结束。

public boolean delete(int key){

if(root==null){

System.out.println("The tree is empty...");

return false;

}

Node targetParent=root;

Node target=root;

boolean isLeftChild=false;

//找到对应的删除节点target和其父节点targetParent

while (target.element!=key){

if(key

targetParent=target;

target=target.leftChild;

isLeftChild=true;

}else{

targetParent=target;

target=target.rightChild;

isLeftChild=false;

}

if(target==null){

System.out.println("The target node does not exist...");

return false;

}

}

//如果删除的节点是叶子节点

if(target.leftChild==null&&target.rightChild==null){

if(root.element==target.element){

root=null;

return true;

}

if(isLeftChild){

targetParent.leftChild=target.leftChild;

}else{

targetParent.rightChild=target.leftChild;

}

}

//如果删除的节点只有一个子节点

//如果该节点是左子树

else if(target.leftChild!=null&&target.rightChild==null){

if(root.element==target.element){

root=target.leftChild;

return true;

}

if(isLeftChild){

targetParent.leftChild=target.leftChild;

}else{

targetParent.leftChild=target.rightChild;

}

}

//如果该节点是右子树

else if(target.leftChild==null&&target.rightChild!=null){

if(root.element==target.element){

root=target.rightChild;

return true;

}

if(isLeftChild){

targetParent.rightChild=target.leftChild;

}else{

targetParent.rightChild=target.rightChild;

}

}

else{

Node followingNode = this.getFollowingNode(target);

if(target.element == root.element)

root = followingNode;

else if(isLeftChild)

targetParent.leftChild = followingNode;

else

targetParent.rightChild = followingNode;

followingNode.leftChild = target.leftChild;

followingNode.rightChild = target.rightChild;

}

return true;

}

//获取删除节点后续节点

public Node getFollowingNode(Node node2Del){

Node nodeParent = node2Del;

//只有被删除节点有左右子节点时,才会调用该方法

//这里直接调用rightChild是没有问题的

Node node = node2Del.rightChild;

while(node.leftChild != null){

nodeParent = node;

node = node.leftChild;

}

if(node.element != node2Del.rightChild.element)

nodeParent.leftChild = node.rightChild;

else

nodeParent.rightChild = node.rightChild;

return node;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值