matlab 彩色图片分解,MATLAB 彩色图像分割

本文介绍了使用MATLAB进行彩色图像分割的方法,主要基于Kmean聚类算法。通过将RGB图像转换为LAB空间,然后进行分块处理和聚类,以实现图像分割。实验对比了不同分块大小和迭代次数对算法运行时间和分割效果的影响,探讨了分块效应和聚类中心选择对结果的优化。
摘要由CSDN通过智能技术生成

【实例简介】

基于MATLAB彩色图像分割,采用聚类算法,MATLAB工具

(1)利用RGB空间到LAB空间转换公式(1)-(9);

五· Kmean的聚类算法步骤:

(1)读入图像数据,把彩包图像从RGB颜色空间转化到Lab空间。L表示亮度层

色度a表示图像像素落λred-gren轴,色度b*表示图像像素落入bue-ye1low

(2)根据图像颜色分布选取聚类数目p,山于一般图像的主颜色有3-4个,所以选取

k=3

(3)假设图像像素个数为m*n,任取聚类中心C;(i=1,…,3)分别为像素最大值、

最小值、(最大值+最小值)、2,并将图像像素X(jm*n)按照最小距离准则分配

给任个聚类中心,使其满足下式

nix -clb

(4)按照下式修正聚类中心的值,式中q1(i=L,…,3)为某类像素的个数

∑x;ED1X

q

(5)将图像中的全部像素按照新的中心重新聚类,重复(3)(4)直至聚类结果不再

变化

(6)用3种不同颜色标记像素所属类别,牛成颜色聚类索引图

(7)从颜色聚类索引图中选出某一类,将原图像中该类以外其它位置设为0,这样得

到3幅区域分割图像;

8)合并区域分割图与显著图SM。若区域分割图最大程度包含了图像的显著点,则

对该分割图进行目标轮廓提取、膨胀、腐蚀和区域填充等运算形成感兴趣区标记

图,寻找标记图中值为0的像素点,将其在原图中的r、g、b值设为0,从而提

取图像的感兴趣区。

六·改进 Kmean的聚类算法步骤

图像分块理论:凵知图像大小为(320*213,3维),因此图像分块为【行320=16*20,列

(213=3*71)】分块大小为20*71,有3*16-48块。对分块后的图像进行 Kmean运算,计算

方法与上述方法一致,只是图像大小改变

七·实验程序流程图与实验代码:见附录一

开始

开始

读图

提取R、G、B分量

读图

KG空间转换为LAB空间

图傻分块

[燙取a分量组成新短阼A

聚类中心

对每块图像进行RGB

空间转换为LAB空间

设定初始误差上限

迭代次数上限

进行K均伯运算没有达到

对每决图像进行K

均值聚类计算

是否达到迭代次数上限

护接分块图像

计算迭代误差

误差不满足条件

图像边缘处理

选出原图属于同一类的

像素点,将其它点置1/0

显示结果

显示结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值