特征值与特征向量 matlab数值解,第3章 矩阵特征值与特征向量的计算 数值分析与各种算法的matlab代码.ppt...

第3章 矩阵特征值与特征向量的计算 数值分析与各种算法的matlab代码

3.3.2 Jacobi旋转法 由于一次正交相似变换A→C=PTAP可将A的两个非对角元素化为零。因此可选一系列正交变换矩阵Pk,对A进行正交相似变换,直至将A化为近似对角矩阵 3.3.3 Jacobi 过关法 3.4 Household方法 Householder方法是计算实对称矩阵A的部分或全部特征值及其特征向量,计算过程是:先利用正交相似变换将A约化为对称的三对角矩阵C,其次应用对分法计算C的特征值,最后计算特征向量. 3.4.1 实对称矩阵的三对角化 Household变换 3.4.2 求对称三对角矩阵特征值的对分法 3.5 QR算法 设 为单位向量,即 称此为Household矩阵,简称H矩阵。 容易验证 H 矩阵是对称的且正交的矩阵,即 由于 且对如何与u 直交的向量v, 都有 因此,对任意 ,可设 ,则其H变换为 若将 中所用与向量u正交的方向视为一个镜面,有上述公式看到,H 变换不改变向量在镜面上的投影,并将向量沿法向量的投影改变为反方向等长度的向量,因此H变换也称为镜面反射变换 由H变换的性质不难知道,对任意非零向量 , 如果 则必存在H矩阵,使得 事实上,当取 时,即可验证由(3.4.2)式所定义 的矩阵满足 的要求 P83 例3.5 * 第三章????? 矩阵特征值与特征向量的计算 引言 在科学技术的应用领域中,许多问题都归为求解一个特 征系统。如动力学系统和结构系统中的振动问题,求系统的频 率与振型;物理学中的某些临界值的确定等等。 §3.1 乘幂法及其变体 3.1.1 乘幂法 定理 设A ?Rn?n有完全特征向量系,若?1, ?2,…, ?n为A的n个特征值且满足 对任取初始向量x(0) ?Rn,对乘幂公式 确定的迭代序列{xk},有下述结论: (1)当 时,对i = 1, 2, …, n 收敛速度取决于 的程度,r 越小收敛越快,r ? 1收敛慢, 且x(k)(当k充分大时)为相应于?1的特征向量的近似值。 (2)当 时 a)若?1 = ?2,则主特征值?1及相应特征向量的求法同(1); 收敛速度取决于 的程度。向量 、 c)若 ,则连续迭代两次,计算出x(k+1),x(k+2), 分别为主特征值?1、?2相应的特征向量的近似值。 然后对j = 1, 2, …, n 解方程 b)若?1 = -?2,对i = 1, 2, …, n 求出 、 后,由公式 解出主特征值?1、?2。此时收敛速度取决于 的程度。 向量 、 分别为相应于?1,?2 的特征向量的近似值。 规范化乘幂法 令max(x)表示向量x分量中绝对值最大者。即如果有某i0,使 则 max (x) = xi 对任取初始向量x(0),记 则 一般地,若已知x(k),称公式 定理 设A?Rn?n具有完全特征向量系,?1, ?2, …, ?n为A 则对任初始向量x(0),由规范化的乘幂法公式确定的向量序列 (1) (2)y(k)为相应于主特征值?1的特征向量近似值 的n个特征值,且满足 y(k),x(k)满足 3.1.2 反幂法 若 A 有| ?1 | ? | ?2 | ? … > | ?n |,则 A?1 有 1 1 1 1 1 l l l ? …? > - n n A?1 的主特征根 A的绝对值最小的特征根 如何计算 解线性方程组 对应同样一组特征向量。 设A?Rn?n可逆,则无零特征值,由 有 规范化反幂法公式为 如果考虑到利用原点移位加速的反幂法,则记B = A - ?0I, 对任取初始向量x(0)?Rn, 3.1.3 乘幂法的加速(原点位移法) 希望 | ?2 / ?1 | 越小越好。 不妨设 ?1 > ?2 ? … ? ?n ,且 | ?2 | > | ?n |。 取?0(常数),用矩阵B = A - ?0I 来代替A进行乘幂迭代。 (i = 1, 2, …, n) 设?i (i = 1, 2, …, n)为矩阵B 的特

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值