0 引言
在应力作用下,混凝土将产生随着时间而增加的徐变变形。若没有受到任何约束,混凝土的徐变为自由变形,混凝土中的应力不会发生变化(常应力)。此情况便是已知应力来求应变,为徐变问题[,其计算比较简单,如静定结构的徐变计算。当徐变受到强制约束后,使应变保持不变(常应变),将产生约束应力,该应力与初始应力叠加得到当前应力,其值与初始应力相比减小了,即出现了应力松弛,为松弛问题。由此看出,徐变问题和松弛问题是约束徐变的两个极端,前者是无约束,无应力改变,仅有徐变增加,徐变应变(变应变)是待求的未知量;后者是强制约束,无应变改变,仅有应力减小,约束应力(变应力)是待求的未知量。混凝土的徐变老化行为是介于两者之间的,应力和应变都是(随时间)变化的,且两者都是待求的未知量。变应变、变应力和时间之间的关系由混凝土的时间本构方程来描述,至今有积分本构、微分本构、增量求和本构和代数本构。采用代数本构方程是最为有效的工程实用方法[。该法关键是要确定松弛系数ρ(Trost[提出,Bazant[等称它为老化系数x)。
由于一般形式的时间本构方程为积分本构,求解松弛系数需要采用数值法,如Bazant[按照Volterra积分求解,假设一个阶跃应变历程,由松弛函数求松弛系数。陈永春[采用了H. M.克雷洛夫-H. N.鲍戈柳布夫数值方法。数值法过程复杂不便于工程应用,要方便应用,需将结果绘制成实用图表。工程图表能够用于手算,并为有限元计算提供了一种有效的验证手段。
在解析法上,按照Dischinger假设,可获得松弛系数指数形式的解析公式,该公式对晚期加载情况误差大。孙宝俊[按照混凝土继效流动徐变理论推导了松弛系数计算的解析式。张军等[基于变系数广义开尔文模型提出了率型迭加算法。以上属于基于徐变系数的理论算法,另外,还有基于实测数据或数值分析的经验公式法,如朱伯芳[对大体积混凝土提出的指数函数公式,王勋文等[根据试验数据采用高斯-牛顿法进行非线性回归得到的公式。Bazant和Lacidogna等
本研究采用逐步积分的数值方法计算松弛系数,基于《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)[(以下简称为公路桥梁规范)的徐变系数模型,给出了计算图,并分析了如何用该图来求解超静定连续梁的徐变次弯矩。
1 基本理论
1.1 混凝土结构的徐变效应
随着时间的推移,混凝土中的水分会不断减小,混凝土体积也在随之缩小,在无荷载作用时混凝土的体积缩小为收缩;在有荷载作用时混凝土产生的变形为徐变。结构中的混凝土受到了各种约束,如钢筋和超静定支座,随着时间推移所发生的变化如
图 1 时间的影响
Fig. 1 Effect of time
1.2 时间本构方程
随着时间的推移,结构中混凝土的应力和应变总是在持续变化,应力和应变往往相互影响和同时变化。应力可能是由荷载作用引起的,也可能是由应变引起的,如收缩引起的重分布应力。应变可能是由应力产生的,也可能是由非直接荷载作用产生的,如支座沉降引起的应变。无论是应力引起了应变,还是应变引起了应力,它们最终都须满足物理方程(时间本构方程,也称为徐变本构方程)。
考虑时间t因素,混凝土的应变ε包括瞬时弹性应变εe、徐变εcr、收缩εcs。无论是弹性还是非弹性,这些应变均满足叠加原理,即有:
(1)
这3项应变中,前两项是与应力相关的,即应力松弛计算涉及的瞬时弹性应变和徐变,这样混凝土应变为:
(2)
徐变是混凝土材料特有的时变特性,其大小取决于许多因素,主要包括压应力、时间(加载龄期t0、应变计算时间t)、水灰比、水泥品种、构件尺寸、湿度和温度等混凝土自身因素和环境影响。通常,采用一个无量纲的以时间为自变量的徐变系数来考虑这些因素,用符号φ(t, t0)表示(简写为φt, t0),代表t时刻单位应力的徐变与t0时刻的瞬时弹性应变的比值。
引入徐变系数后,至混凝土在t0时刻施加应力σc0,t时刻混凝土的应变可表示为:
(3)
式中,σc为混凝土应力,Ec为混凝土弹性模量。下文用下标“0”表示t0时刻,t0时刻的混凝土应力σc(t0)简写为σc0,Ec(t0)简写为Ec0。
若t时刻应力对t0时刻应力的增量为Δσc,按照黏弹性材料在应力不超过0.5倍抗压强度时的Botzman叠加原理,并考虑应力增量的连续变化,有:
(4)
式中τ为龄期变量。
这是积分形式的时间本构方程,方程右边的第2项是否可解析积分,还是只能数值积分,取决于积分核函数(徐变系数φt, τ),若φt, τ能解析表达,则可解析积分,否则只能数值积分。针对φt, τ,人们提出了各种不同程度的近似简化或假设,以推导获得便于应用的本构方程。代数本构方程是最常用的,由此来求解结构的徐变效应的方法称为代数方法。代数方法中关键要确定的松弛系数,可由松弛问题来确定(1.3至1.5节)。
1.3 混凝土纯松弛的增量求和本构关系
松弛问题(混凝土的纯松弛)是指在t0时刻对素混凝土施加强制约束,保持应变εc不随时间改变,混凝土的应力将随时间减小。松弛函数R(t, t0) (简写为Rt, t0)指在这一情况下每单位应变在任意t时刻的应力,即应力与松弛函数的关系可表示为:
(5)
采用数值法[计算松弛函数是把时间划分为若干个间隔逐步计算。现将时间从t0至t划分为n+1个时点,令时点向量ti={t0, t1, t2, …, tn}T,令中间时点向量tm={tm1, tm2, …, tmn}T,其中tm(i)=0.5(ti-1+