Basic Sort Algorithms

1. Bubble Sort
public void bubbleSort(int[] arr) {
  boolean swapped = true;
  int j = 0;
  int tmp;
  while (swapped) {
    swapped = false;
    j++;
    for (int i = 0; i < arr.length - j; i++) {
      if (arr[i] > arr[i + 1]) {
      tmp = arr[i];
      arr[i] = arr[i + 1];
      arr[i + 1] = tmp;
      swapped = true;
      }
    }
 }
}

Performance

Worst case performance O(n^2)
Best case performance O(n)
Average case performance O(n^2)
Worst case space complexity O(1) auxiliary

2. Selection Sort
  public void doSelectionSort(int[] arr){ 
    for (int i = 0; i < arr.length - 1; i++){
      int index = i;
      for (int j = i + 1; j < arr.length; j++){
         if (arr[j] < arr[index]){
            index = j;
         }
      }
      int smallerNumber = arr[index]; 
      arr[index] = arr[i];
      arr[i] = smallerNumber;
   }
  }

 

Performance

Worst case performance О(n2)
Best case performance О(n2)
Average case performance О(n2)
Worst case space complexity О(n) total, O(1) auxiliary

3. Insertion Sort
public static void insertionSort(int array[]) {
  int n = array.length;
  for (int j = 1; j < n; j++) {
    int key = array[j];
    int i = j-1;
    while ( (i > -1) && ( array [i] > key ) ) {
      array [i+1] = array [i];
      i--;
    }
    array[i+1] = key;
  }
}

Performance

Worst case performance О(n2) comparisons, swaps
Best case performance O(n) comparisons, O(1) swaps
Average case performance О(n2) comparisons, swaps
Worst case space complexity О(n) total, O(1) auxiliary

Comparison:

There’s probably no point in using the bubble sort, unless you don’t have your algorithm book handy. The bubble sort is so simple that you can write it from memory. Even so, it’s practical only if the amount of data is small.

The selection sort minimizes the number of swaps, but the number of comparisons is still high. This sort might be useful when the amount of data is small and swapping data items is very time-consuming compared with comparing them. The insertion sort is the most versatile of the three and is the best bet in most situa- tions, assuming the amount of data is small or the data is almost sorted. For larger amounts of data, quicksort is generally considered the fastest approach.

It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:

We’ve compared the sorting algorithms in terms of speed. Another consideration for any algorithm is how much memory space it needs. All three of the algorithms in this chapter carry out their sort in place, meaning that, besides the initial array, very little extra memory is required. All the sorts require an extra variable to store an item temporarily while it’s being swapped.

转载于:https://www.cnblogs.com/codingforum/p/6209330.html

汉字字库存储芯片扩展实验 # 汉字字库存储芯片扩展实验 ## 实验目的 1. 了解汉字字库的存储原理和结构 2. 掌握存储芯片扩展技术 3. 学习如何通过硬件扩展实现大容量汉字字库存储 ## 实验原理 ### 汉字字库存储基础 - 汉字通常采用点阵方式存储(如16×16、24×24、32×32点阵) - 每个汉字需要占用32字节(16×16)到128字节(32×32)不等的存储空间 - 国标GB2312-80包含6763个汉字,需要较大存储容量 ### 存储芯片扩展方法 1. **位扩展**:增加数据总线宽度 2. **字扩展**:增加存储单元数量 3. **混合扩展**:同时进行位扩展和字扩展 ## 实验设备 - 单片机开发板(如STC89C52) - 存储芯片(如27C256、29C040等) - 逻辑门电路芯片(如74HC138、74HC373等) - 示波器、万用表等测试设备 - 连接线若干 ## 实验步骤 ### 1. 单芯片汉字存储实验 1. 连接27C256 EPROM芯片到单片机系统 2. 将16×16点阵汉字字库写入芯片 3. 编写程序读取并显示汉字 ### 2. 存储芯片字扩展实验 1. 使用地址译码器(如74HC138)扩展多片27C256 2. 将完整GB2312字库分布到各芯片中 3. 编写程序实现跨芯片汉字读取 ### 3. 存储芯片位扩展实验 1. 连接两片27C256实现16位数据总线扩展 2. 优化字库存储结构,提高读取速度 3. 测试并比较扩展前后的性能差异 ## 实验代码示例(单片机部分) ```c #include <reg52.h> #include <intrins.h> // 定义存储芯片控制引脚 sbit CE = P2^7; // 片选 sbit OE = P2^6; // 输出使能 sbit
Quick sort is a popular sorting algorithm that works by partitioning an array into two sub-arrays, and then recursively sorting each sub-array. It is a divide-and-conquer algorithm that has an average time complexity of O(n log n), making it one of the fastest sorting algorithms. The basic idea behind quick sort is to select a pivot element, partition the array around the pivot element, and then recursively apply the same process to each of the sub-arrays. The partitioning process involves selecting a pivot element, rearranging the array so that all elements less than the pivot are on one side and all elements greater than the pivot are on the other side, and then returning the index of the pivot element. This pivot index is then used to divide the array into two sub-arrays, which are recursively sorted. Here's an example implementation of quick sort in Python: ``` def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[0] left = [] right = [] for i in range(1, len(arr)): if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right) ``` This implementation selects the first element of the array as the pivot, and then uses list comprehensions to create the left and right sub-arrays. The left sub-array contains all elements less than the pivot, while the right sub-array contains all elements greater than or equal to the pivot. The function then recursively sorts the left and right sub-arrays and combines them with the pivot element to produce the final sorted array.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值