Basic Sort Algorithms

1. Bubble Sort
public void bubbleSort(int[] arr) {
  boolean swapped = true;
  int j = 0;
  int tmp;
  while (swapped) {
    swapped = false;
    j++;
    for (int i = 0; i < arr.length - j; i++) {
      if (arr[i] > arr[i + 1]) {
      tmp = arr[i];
      arr[i] = arr[i + 1];
      arr[i + 1] = tmp;
      swapped = true;
      }
    }
 }
}

Performance

Worst case performance O(n^2)
Best case performance O(n)
Average case performance O(n^2)
Worst case space complexity O(1) auxiliary

2. Selection Sort
  public void doSelectionSort(int[] arr){ 
    for (int i = 0; i < arr.length - 1; i++){
      int index = i;
      for (int j = i + 1; j < arr.length; j++){
         if (arr[j] < arr[index]){
            index = j;
         }
      }
      int smallerNumber = arr[index]; 
      arr[index] = arr[i];
      arr[i] = smallerNumber;
   }
  }

 

Performance

Worst case performance О(n2)
Best case performance О(n2)
Average case performance О(n2)
Worst case space complexity О(n) total, O(1) auxiliary

3. Insertion Sort
public static void insertionSort(int array[]) {
  int n = array.length;
  for (int j = 1; j < n; j++) {
    int key = array[j];
    int i = j-1;
    while ( (i > -1) && ( array [i] > key ) ) {
      array [i+1] = array [i];
      i--;
    }
    array[i+1] = key;
  }
}

Performance

Worst case performance О(n2) comparisons, swaps
Best case performance O(n) comparisons, O(1) swaps
Average case performance О(n2) comparisons, swaps
Worst case space complexity О(n) total, O(1) auxiliary

Comparison:

There’s probably no point in using the bubble sort, unless you don’t have your algorithm book handy. The bubble sort is so simple that you can write it from memory. Even so, it’s practical only if the amount of data is small.

The selection sort minimizes the number of swaps, but the number of comparisons is still high. This sort might be useful when the amount of data is small and swapping data items is very time-consuming compared with comparing them. The insertion sort is the most versatile of the three and is the best bet in most situa- tions, assuming the amount of data is small or the data is almost sorted. For larger amounts of data, quicksort is generally considered the fastest approach.

It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:

We’ve compared the sorting algorithms in terms of speed. Another consideration for any algorithm is how much memory space it needs. All three of the algorithms in this chapter carry out their sort in place, meaning that, besides the initial array, very little extra memory is required. All the sorts require an extra variable to store an item temporarily while it’s being swapped.

转载于:https://www.cnblogs.com/codingforum/p/6209330.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值